Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathbf{S r}_{11} \mathbf{I n S b}_{\mathbf{9}}$ grown from molten $\mathbf{I n}$

Jonathan Hullmann, Shengqing Xia and Svilen Bobev*

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
Correspondence e-mail: sbobev@chem.udel.edu

Received 30 July 2007; accepted 16 August 2007
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{b}-\mathrm{Sb})=0.001 \AA$; R factor $=0.022 ; w R$ factor $=0.034 ;$ data-to-parameter ratio $=31.6$.

Single crystals of the title compound, undecastrontium indium nonaantimonide, have been synthesized from a high-temperature reaction using a stoichiometric ratio of the elements Sr and Sb and excess In to act as a self-flux. The noncentrosymmetric structure has been determined from single-crystal X-ray diffraction data and has been found to be of the $\mathrm{Ca}_{11} \mathrm{InSb}_{9}$ structure type (Pearson code oI84). The structure can be visualized as being built of $11 \mathrm{Sr}^{2+}$ cations, an $\left[\mathrm{InSb}_{4}\right]^{9-}$ tetrahedron, an $\left[\mathrm{Sb}_{2}\right]^{4-}$ dimer and three Sb^{3-} anions. One of six crystallographically independent Sr atoms, one of five Sb atoms and the In atom are located on positions with .. 2 symmetry.

Related literature

$\mathrm{Sr}_{11} \mathrm{InSb}_{9}$ is a Zintl (1939) compound and crystallizes in the $\mathrm{Ca}_{11} \mathrm{InSb}_{9}$ structure type (Cordier et al., 1985a). The latter compound is reported to be a semiconductor with a large band gap (Young \& Kauzlarich, 1995). The title compound is isotypic with $\mathrm{Yb}_{11} \mathrm{GaSb}_{9}$ (Bobev et al., 2005), $\mathrm{Yb}_{11} \mathrm{InSb}_{9}$ and $\mathrm{Eu}_{11} \mathrm{GaSb}_{9}$ (Xia et al., 2007), all with Pearson code oI84 (Villars \& Calvert, 1991). The relationship between the $\mathrm{Ca}_{11} \mathrm{InSb}_{9}$ structure type and that of $\mathrm{Ca}_{21} \mathrm{Mn}_{4} \mathrm{Bi}_{18}$ has been discussed by Xia \& Bobev (2007). Ionic radii were taken from Shannon (1976). Crystals of $\mathrm{Sr}_{5} \mathrm{In}_{2} \mathrm{Sb}_{6}$ (Cordier et al., 1985b) were also present in the reaction mixture.

Experimental

Crystal data

$\mathrm{Sr}_{11} \mathrm{InSb}_{9}$

$M_{r}=2174.39$
Orthorhombic, Iba2
$a=12.3885$ (13) \AA
$b=13.1003$ (14) \AA
$c=17.4966(18) \AA$

Data collection

Bruker SMART APEX
diffractometer
$V=2839.6(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=29.64 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
$0.08 \times 0.05 \times 0.04 \mathrm{~mm}$

> Absorption correction: multi-scan $\quad(S A D A B S ;$ Sheldrick, 2003)
> $T_{\min }=0.172, T_{\max }=0.308$

15129 measured reflections 3124 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.034$
$S=0.90$
3124 reflections
99 parameters
1 restraint

2972 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.046$
$\Delta \rho_{\max }=0.90 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-1.00 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1496 Friedel pairs
Flack parameter: 0.017 (6)

Table 1

Selected bond lengths (\AA).

Sr1-Sb3	3.1806 (9)	$\mathrm{Sr} 3-\mathrm{Sb} 1^{\text {iv }}$	3.5237 (10)
Sr1-Sb4	3.2466 (10)	$\mathrm{Sr} 3-\mathrm{Sb} 2{ }^{\text {ii }}$	3.5434 (9)
Sr1-Sb5 ${ }^{\text {i }}$	3.3742 (10)	$\mathrm{Sr} 4-\mathrm{Sb} 2{ }^{\text {ii }}$	3.1924 (10)
$\mathrm{Sr} 1-\mathrm{Sb} 3^{\text {ii }}$	3.3932 (9)	Sr4-Sb1	3.3574 (10)
$\mathrm{Sr} 1-\mathrm{Sb} 2^{\text {iii }}$	3.4589 (9)	$\mathrm{Sr} 4-\mathrm{Sb5}{ }^{\text {v }}$	3.4647 (10)
$\mathrm{Sr} 1-\mathrm{Sb} 1^{\text {iv }}$	3.5094 (10)	Sr4-Sb4	3.5726 (10)
$\mathrm{Sr} 2-\mathrm{Sb} 2^{\text {iii }}$	3.2082 (10)	$\mathrm{Sr} 4-\mathrm{Sb} 4{ }^{\text {v }}$	3.6246 (10)
Sr2-Sb1	3.3012 (10)	$\mathrm{Sr} 5-\mathrm{Sb3}{ }^{\text {vii }}$	3.2068 (11)
Sr2-Sb4	3.6040 (10)	Sr5-Sb5 ${ }^{\text {vii }}$	3.3398 (11)
$\mathrm{Sr} 2-\mathrm{Sb} 4^{\text {v }}$	3.6137 (10)	Sr5-In1 ${ }^{\text {viii }}$	3.5475 (9)
Sr2-Sb3 ${ }^{\text {v }}$	3.6170 (9)	$\mathrm{Sr} 5-\mathrm{Sb} 1^{\text {ix }}$	3.6506 (9)
$\mathrm{Sr} 2-\mathrm{Sb} 3{ }^{\text {ii }}$	3.6409 (10)	Sr6-Sb3	3.1990 (5)
$\mathrm{Sr} 3-\mathrm{Sb} 3^{\text {vi }}$	3.2340 (10)	$\mathrm{Sr} 6-\mathrm{Sb} 3^{\mathrm{x}}$	3.1990 (5)
Sr3-Sb4	3.2347 (10)	$\mathrm{Sr} 6-\mathrm{Sb5}{ }^{\text {xi }}$	3.4575 (9)
$\mathrm{Sr} 3-\mathrm{Sb} 5{ }^{\text {ii }}$	3.4584 (9)	$\mathrm{Sb} 1-\mathrm{In} 1^{\text {xii }}$	2.9213 (7)
Sr3-Sb5	3.5131 (9)	$\mathrm{Sb} 4-\mathrm{Sb} 4^{\text {v }}$	2.8437 (9)

Symmetry codes: (i) $-x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (iii) $x+\frac{1}{2}, y-\frac{1}{2}, z+\frac{1}{2}$; (iv) $x-\frac{1}{2},-y+\frac{1}{2}, z$; (v) $-x+1,-y, z$; (vi) $-x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (vii) $-x+1, y, z+\frac{1}{2}$; (viii)
$x+1,-y, z+\frac{1}{2} ;(\mathrm{ix})-x+2, y, z+\frac{1}{2} ;(\mathrm{x})-x,-y, z ;(\mathrm{xi})-x, y, z+\frac{1}{2} ;(\mathrm{xii}) x+1, y, z$.
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

This work was funded in part by the University of Delaware start-up grant awarded to SB. JH thanks the National Science Foundation and the Howard Hughes Medical Institute for summer research fellowships.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2135).

References

Bobev, S., Fritsch, V., Thompson, J. D., Sarrao, J. L., Eck, B., Dronskowski, R. \& Kauzlarich, S. M. (2005). J. Solid State Chem. 178, 1071-1079.
Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cordier, G., Schäfer, H. \& Stelter, M. (1985a). Z. Naturforsch. Teil B, 40, 868871.

Cordier, G., Schäfer, H. \& Stelter, M. (1985b). Z. Naturforsch. Teil B, 40, 5-8.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Villars, P. \& Calvert, L. D. (1991). Pearson's Handbook of Crystallographic Data for Intermetallic Compounds, 2nd ed. Materials Park, Ohio, USA: American Society for Metals.
Xia, S., Hullmann, J., Bobev, S., Ozbay, A., Nowak, E. R. \& Fritsch, V. (2007). J. Solid State Chem. 180, 2088-2094.
Xia, S. \& Bobev, S. (2007). Inorg. Chem. 46, 874-883.
Young, D. M. \& Kauzlarich, S. M. (1995). Chem. Mater. 7, 206-209.
Zintl, E. (1939). Angew. Chem. 52, 1-6.

supplementary materials

$\mathbf{S r}_{11} \mathbf{I n S b}_{9}$ grown from molten In

J. Hullmann, S. Xia and S. Bobev

Comment

The flux method was successfully applied for the synthesis of $\mathrm{Yb}_{11} \mathrm{GaSb}_{9}$ (Bobev et al., 2005), $\mathrm{Yb}_{11} \mathrm{InSb}_{9}$ and $\mathrm{Eu}_{11} \mathrm{GaSb}_{9}$ (Xia et al., 2007). The electronic structure and the properties of $\mathrm{Yb}_{11} \mathrm{GaSb}_{9}$ (Bobev et al., 2005) are shown to be consistent with the Zintl concept (Zintl, 1939) and confirm that this class of compounds are small band-gap semiconductors or poor metals, as $\mathrm{Eu}_{11} \mathrm{InSb}_{9}$ and $\mathrm{Yb}_{11} \mathrm{InSb}_{9}$ (Xia et al., 2007), whereas the Ca -analogs are reported to be semiconductors with larger band-gaps (Young \& Kauzlarich, 1995). The close structural relationship between the $\mathrm{Ca}_{11} \mathrm{InSb}_{9}$ structure type (Cordier et al., 1985a) and that of the monoclinic $\mathrm{Ca}_{21} \mathrm{Mn}_{4} \mathrm{Bi}_{18}$ structure has been discussed in an earlier publication (Xia and Bobev, 2007). In connection with these studies, we undertook a similar synthetic approach in the $\mathrm{Sr}-\mathrm{In}-\mathrm{Sb}$ system.
$\mathrm{Sr}_{11} \mathrm{InSb}_{9}$ is a new member of the orthorhombic $\mathrm{Ca}_{11} \mathrm{InSb}_{9}$ structure type (Pearson's code oI84; Villars \& Calvert, 1991). Its structure is very complex and has 12 crystallographically unique sites in the asymmetric unit. Thus it is difficult to explain in terms of packing of spheres; however, it can be rationalized simply using the Zintl formalism (Zintl, 1939). According to these rules and assuming a complete valence electron transfer from the less electronegative element, Sr , to the more electronegative In and Sb , one can visualize the structure as being built of eleven Sr^{2+} cations, an $[\operatorname{InSb} 4]^{9-}$ tetrahedron, an $\left[\mathrm{Sb}_{2}\right]^{4-}$ dimer, and three Sb^{3-} anions (Fig. 1).

The In— Sb bonding in the In centered tetrahedron has a covalent character with $\mathrm{In}-\mathrm{Sb}$ distances ranging between 2.9213 (7) and 2.9312 (6) \AA. These values are comparable to the $\mathrm{In} — \mathrm{Sb}$ distances in the isotypic and isoelectronic $\mathrm{Eu}_{11} \mathrm{InSb}_{9}$, 2.913 (2) and 2.932 (2) \AA (Xia et al., 2007). We note that since Eu is divalent in $\mathrm{Eu}_{11} \mathrm{InSb}_{9}$ and since the ionic radii of Sr^{2+} and Eu^{2+} are nearly the same (Shannon, 1976), such comparison is straightforward. Not surprisingly, the $\mathrm{Sb}-\mathrm{Sb}$ distance in $\mathrm{Sr}_{11} \mathrm{InSb}_{9}(2.8437(9) \AA)$ matches closely the $\mathrm{Sb} — \mathrm{Sb}$ distance in the Eu analog (2.823 (2) \AA) and also signifies strong covalent bonding. The interactions between the Sr^{2+} cations and the anions are more electrostatic in nature as evidenced by the larger coordination numbers and distances.

Experimental

Handling of the raw materials and the reaction products was done inside an Ar filled glove box. The reaction was carried out by loading the elements in an alumina crucible: Sr (Aldrich, pieces, distilled 99.99\%), In (Alfa, shot, 99.99\%), and Sb (Alfa, shot, 99.99%) in a ratio of 11:75:9. The large excess of In was intended as a metal flux. The crucible with the reaction mixture was then flame sealed under vacuum in a silica ampoule which was then placed in a furnace and heated to 1273 K at a rate of $300 \mathrm{~K} / \mathrm{h}$. The reaction proceeded at this temperature for 24 h before being cooled to 873 K at a rate of $10 \mathrm{~K} / \mathrm{h}$. At 873 K the ampoule was removed and the In flux was decanted. The main product of the reaction consisted of black crystals with irregular shapes, which were later determined to be the title compound. Also present were silver-metallic crystals with needle-like habit, which were found to be $\mathrm{Sr}_{5} \mathrm{In}_{2} \mathrm{Sb}_{6}$ (Cordier et al., 1985b). Note that $\mathrm{Sr}_{11} \mathrm{InSb}_{9}$ crystals decompose in air.

supplementary materials

Refinement

The full occupancies for all sites were verified by freeing the site occupation factor for an individual atom, while other remaining parameters were kept fixed. This proved that all positions are fully occupied with corresponding deviations from full occupancy within 3σ. The maximum peak and deepest hole are located $1.36 \AA$ away from $\operatorname{Sr} 6$ and $0.73 \AA$ away from $\mathrm{Sb4}$, respectively.

Figures

Fig. 1. A view of the structure of $\mathrm{Sr}_{11} \mathrm{InSb}_{9}$ along the c axis. Thermal ellipsoids are drawn at the 90% probability level. The Sr , In and Sb atoms are represented in red, green and light blue color, respectively.
undecastrontium indium nonaantimonide

Crystal data

$\mathrm{Sr}_{11} \mathrm{InSb}_{9}$
$M_{r}=2174.39$

Orthorhombic, Iba2
Hall symbol: I $2-2 \mathrm{c}$
$a=12.3885$ (13) \AA
$b=13.1003$ (14) \AA
$c=17.4966(18) \AA$
$V=2839.6(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F_{000}=3704 \\
& D_{\mathrm{x}}=5.086 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Mo} \mathrm{~K} \mathrm{\alpha} \mathrm{radiation} \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3124 \text { reflections } \\
& \theta=2.3-27.1^{\circ} \\
& \mu=29.64 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& \text { Irregular, black } \\
& 0.08 \times 0.05 \times 0.04 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=120(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.172, T_{\text {max }}=0.308$
15129 measured reflections

3124 independent reflections
2972 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=27.1^{\circ}$
$\theta_{\text {min }}=2.3^{\circ}$
$h=-15 \rightarrow 15$
$k=-16 \rightarrow 16$
$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.034$
$S=0.90$
3124 reflections
99 parameters
1 restraint

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.001 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.90$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.00$ e \AA^{-3}
Extinction correction: SHELXTL (Bruker, 2002)
Extinction coefficient: 0.000020 (3)
Absolute structure: Flack (1983), 1496 Friedel pairs
Flack parameter: 0.017 (6)

Special details

Experimental. Crystals were selected in the glove box and cut in a Paratone N oil bath to the desired dimensions. A suitable crystal was then chosen mounted on the tip of a glass fiber and quickly placed under the cold nitrogen stream (ca 150 K) in a Bruker SMART CCD-based diffractometer.

Data collection is performed with four batch runs at $\varphi=0.00^{\circ}(450$ frames $)$, at $\varphi=90.00^{\circ}(450$ frames $)$, at $\varphi=180.00^{\circ}(450$ frames), and at $\varphi=270.00$ (450 frames). Frame width $=0.40^{\circ}$ in ω. Data are merged, corrected for decay, and treated with multi-scan absorption corrections.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Sr 1	$0.42681(6)$	$0.22217(5)$	$0.65758(5)$	$0.01021(16)$
Sr 2	$0.68413(6)$	$0.05401(6)$	$0.62855(4)$	$0.01204(16)$
Sr 3	$0.41024(6)$	$0.22651(6)$	$0.34159(4)$	$0.01095(17)$
Sr 4	$0.68627(7)$	$0.05890(6)$	$0.36909(5)$	$0.01248(17)$
Sr 5	$0.84036(5)$	$0.17355(5)$	$0.99994(6)$	$0.01271(14)$
Sr 6	0.0000	0.0000	$0.67821(6)$	$0.0126(2)$
Sb 1	$0.87132(3)$	$0.11611(3)$	$0.50258(4)$	$0.01040(10)$
Sb 2	0.0000	0.5000	$0.25098(5)$	$0.00951(14)$
Sb 3	$0.17692(4)$	$0.17776(4)$	$0.68278(3)$	$0.01071(11)$
Sb 4	$0.46656(4)$	$0.10383(3)$	$0.49699(3)$	$0.01059(10)$
Sb 5	$0.14600(4)$	$0.13808(4)$	$0.31116(3)$	$0.01019(11)$
In 1	0.0000	0.0000	$0.39295(4)$	$0.01094(17)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr 1	$0.0093(4)$	$0.0111(4)$	$0.0103(4)$	$-0.0002(3)$	$0.0005(3)$	$-0.0007(3)$
Sr 2	$0.0110(4)$	$0.0122(4)$	$0.0129(4)$	$-0.0004(3)$	$0.0026(3)$	$0.0013(3)$
Sr 3	$0.0109(4)$	$0.0118(4)$	$0.0101(4)$	$0.0007(3)$	$-0.0004(3)$	$0.0005(3)$
Sr 4	$0.0110(4)$	$0.0133(4)$	$0.0132(4)$	$0.0009(3)$	$-0.0022(3)$	$-0.0020(3)$
Sr 5	$0.0142(3)$	$0.0144(4)$	$0.0095(3)$	$0.0010(3)$	$0.0000(3)$	$-0.0006(4)$
Sr 6	$0.0100(5)$	$0.0099(5)$	$0.0179(6)$	$-0.0008(4)$	0.000	0.000
Sb 1	$0.0097(2)$	$0.0122(2)$	$0.0092(2)$	$-0.00036(18)$	$-0.0001(3)$	$-0.0003(2)$
Sb 2	$0.0094(3)$	$0.0108(3)$	$0.0084(3)$	$0.0000(4)$	0.000	0.000
Sb 3	$0.0096(2)$	$0.0123(2)$	$0.0102(3)$	$-0.0004(2)$	$0.0004(2)$	$-0.0011(2)$
Sb 4	$0.0119(2)$	$0.0109(2)$	$0.0089(2)$	$0.00097(18)$	$-0.0004(3)$	$0.0003(2)$
Sb 5	$0.0093(2)$	$0.0121(2)$	$0.0091(3)$	$0.0006(2)$	$-0.0005(2)$	$0.0004(2)$
In 1	$0.0103(4)$	$0.0116(4)$	$0.0109(4)$	$-0.0009(3)$	0.000	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

Sr1-Sb3	3.1806 (9)
Sr1—Sb4	3.2466 (10)
Sr 1 - $\mathrm{Sb}^{\text {i }}$	3.3742 (10)
Sr 1 - $\mathrm{Sb} 3^{\text {ii }}$	3.3932 (9)
Sr 1 - $\mathrm{Sb} 2^{\text {iii }}$	3.4589 (9)
	3.5094 (10)
$\mathrm{Sr} 1-\mathrm{Sr} 6{ }^{\text {ii }}$	3.7682 (8)
$\mathrm{Sr} 1-\mathrm{Sr}^{\text {v }}$	3.8005 (10)
Sr 1 — $\mathrm{Sr}^{2}{ }^{\text {vi }}$	3.9034 (11)
Sr 1 - Sr 2	3.9081 (11)
Sr 1 — $\mathrm{Sr}^{\text {vii }}$	4.2183 (11)
Sr 1 — $\mathrm{Sr}^{2}{ }^{\text {iv }}$	4.2301 (11)
Sr 2 - $\mathrm{Sb} 2^{\text {iii }}$	3.2082 (10)
Sr2-Sb1	3.3012 (10)
Sr 2 - Sb 4	3.6040 (10)
Sr 2 - $\mathrm{Sb} 4^{\mathrm{vi}}$	3.6137 (10)
$\mathrm{Sr} 2-\mathrm{Sb} 3{ }^{\text {vi }}$	3.6170 (9)
Sr 2 - $\mathrm{Sb}{ }^{\text {ii }}$	3.6409 (10)
$\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {vi }}$	3.9034 (11)
$\mathrm{Sr} 2-\mathrm{Sb5}{ }^{\text {v }}$	3.9812 (10)
Sr 2 - $\mathrm{Sr}^{\text {viii }}$	4.0704 (9)
$\mathrm{Sr} 2-\mathrm{Sr} 5^{\text {ix }}$	4.2067 (12)
Sr 2 - $\mathrm{Sr}{ }^{\text {ii }}$	4.2301 (11)
$\mathrm{Sr} 3-\mathrm{Sb} 3^{\mathrm{X}}$	3.2340 (10)
Sr3-Sb4	3.2347 (10)

Sr5-Sr1 ${ }^{\text {xiv }}$	4.2183 (12)
Sr6-Sb3	3.1990 (5)
$\mathrm{Sr} 6-\mathrm{Sb} 3{ }^{\mathrm{xvi}}$	3.1990 (5)
Sr6-Sb5 ${ }^{\text {xvii }}$	3.4575 (9)
$\mathrm{Sr} 6-\mathrm{Sb} 5^{\mathrm{xv}}$	3.4575 (9)
Sr6-In1 ${ }^{\text {xv }}$	3.7572 (14)
Sr6-Sr1 ${ }^{\text {xviii }}$	3.7682 (8)
Sr6-Sr1 ${ }^{\text {iv }}$	3.7682 (8)
$\mathrm{Sr6}-\mathrm{Sb} 1^{\text {xix }}$	3.7814 (11)
Sr6-Sb1 $1^{\text {vi }}$	3.7814 (11)
Sr6-Sr2 ${ }^{\text {xix }}$	4.0704 (9)
$\mathrm{Sr} 6-\mathrm{Sr} 2^{\text {vi }}$	4.0704 (9)
Sr6-Sr5 ${ }^{\text {xx }}$	4.3371 (12)
Sb1—In1 ${ }^{\text {viii }}$	2.9213 (7)
$\mathrm{Sb} 1-\mathrm{Sr} 1^{\text {ii }}$	3.5094 (10)
$\mathrm{Sb} 1-\mathrm{Sr} 3{ }^{\text {ii }}$	3.5238 (10)
$\mathrm{Sb} 1-\mathrm{Sr} 5^{\mathrm{xxi}}$	3.6506 (9)
Sb1—Sr6 ${ }^{\text {viii }}$	3.7813 (11)
$\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {vii }}$	3.8041 (9)
$\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {ix }}$	3.8143 (9)
$\mathrm{Sb} 2-\mathrm{Sr} 4^{\text {iv }}$	3.1924 (10)
$\mathrm{Sb} 2-\mathrm{Sr} 4^{\mathrm{xxii}}$	3.1924 (10)
$\mathrm{Sb} 2-\mathrm{Sr} 2^{\mathrm{x}}$	3.2081 (10)
$\mathrm{Sb} 2-\mathrm{Sr} 2^{\mathrm{xxiii}}$	3.2081 (10)
$\mathrm{Sb} 2-\mathrm{Sr}^{\text {x }}$	3.4588 (9)

sup-4

supplementary materials

Sr3-Sb5 ${ }^{\text {ii }}$	3.4584 (9)
Sr3-Sb5	3.5131 (9)
$\mathrm{Sr} 3-\mathrm{Sb} 1^{\text {iv }}$	3.5237 (10)
$\mathrm{Sr} 3-\mathrm{Sb} 2^{\mathrm{ii}}$	3.5434 (9)
$\mathrm{Sr} 3-\mathrm{Sr} 1^{\text {xi }}$	3.8006 (10)
Sr 3 -In1i ${ }^{\text {ii }}$	3.8575 (8)
$\mathrm{Sr} 3-\mathrm{Sr} 4^{\text {vi }}$	3.9550 (11)
$\mathrm{Sr} 3-\mathrm{Sr} 4^{\text {iv }}$	3.9790 (11)
Sr3-Sr4	4.0923 (11)
$\mathrm{Sr} 3-\mathrm{Sr} 5^{\text {xi }}$	4.2184 (12)
$\mathrm{Sr} 4-\mathrm{Sb} 2{ }^{\text {ii }}$	3.1924 (10)
Sr4-Sb1	3.3574 (10)
$\mathrm{Sr} 4-\mathrm{Sb5}{ }^{\text {vi }}$	3.4647 (10)
Sr4-Sb4	3.5726 (10)
$\mathrm{Sr} 4-\mathrm{Sb4} 4^{\text {vi }}$	3.6246 (10)
$\mathrm{Sr} 4-\mathrm{Sr}^{\text {vi }}$	3.9550 (11)
$\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {ii }}$	3.9789 (11)
Sr4-In1 ${ }^{\text {viii }}$	3.9844 (9)
$\mathrm{Sr} 4-\mathrm{Sb} 3{ }^{\text {xi }}$	3.9903 (10)
$\mathrm{Sr} 4-\mathrm{Sr5}{ }^{\text {vii }}$	4.1993 (12)
$\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {ix }}$	4.2613 (11)
$\mathrm{Sr} 5-\mathrm{Sb} 3{ }^{\text {v }}$	3.2068 (11)
$\mathrm{Sr} 5-\mathrm{Sb5}{ }^{\text {v }}$	3.3398 (11)
Sr5-In1 ${ }^{\text {xii }}$	3.5475 (9)
Sr 5 - $\mathrm{Sb}^{\text {xiii }}$	3.6506 (9)
Sr5-Sb4 ${ }^{\text {xiv }}$	3.7722 (9)
Sr 5 - $\mathrm{Sb1}{ }^{\text {xiv }}$	3.8041 (9)
$\mathrm{Sr} 5-\mathrm{Sb} 1^{\mathrm{xv}}$	3.8143 (9)
$\mathrm{Sr} 5-\mathrm{Sb} 4^{\mathrm{v}}$	3.9108 (9)
Sr5-Sr4 ${ }^{\text {xiv }}$	4.1993 (12)
$\mathrm{Sr} 5-\mathrm{Sr} 2{ }^{\text {xv }}$	4.2067 (12)
$\mathrm{Sr} 5-\mathrm{Sr} 3{ }^{\text {v }}$	4.2185 (12)
? \cdots ?	?
$\mathrm{Sb} 3-\mathrm{Sr} 1-\mathrm{Sb} 4$	100.39 (2)
Sb3-Sr1-Sb5 ${ }^{\text {i }}$	74.26 (2)
$\mathrm{Sb} 4-\mathrm{Sr} 1-\mathrm{Sb5}{ }^{\text {i }}$	171.42 (3)
Sb3-Sr1—Sb3 ${ }^{\text {ii }}$	160.29 (3)
Sb4-Sr1—Sb3 ${ }^{\text {ii }}$	99.12 (2)
$\mathrm{Sb} 5{ }^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{Sb} 3{ }^{\text {ii }}$	86.04 (2)
Sb3-Sr1—Sb2 ${ }^{\text {iii }}$	92.05 (2)

$\mathrm{Sb} 2-\mathrm{Sr} 1^{\mathrm{xxiii}}$	3.4588 (9)
Sb 2 - $\mathrm{Sr}^{\text {xxii }}$	3.5434 (9)
$\mathrm{Sb} 2-\mathrm{Sr} 3{ }^{\text {iv }}$	3.5434 (9)
$\mathrm{Sb} 3-\mathrm{Sr} 5^{\mathrm{xi}}$	3.2068 (11)
$\mathrm{Sb} 3-\mathrm{Sr} 3{ }^{\text {i }}$	3.2340 (10)
$\mathrm{Sb} 3-\mathrm{Sr} 1^{\text {iv }}$	3.3932 (9)
$\mathrm{Sb} 3-\mathrm{Sr} 2^{\mathrm{vi}}$	3.6170 (9)
$\mathrm{Sb} 3-\mathrm{Sr} 2^{\text {iv }}$	3.6408 (10)
$\mathrm{Sb} 3-\mathrm{Sr} 4^{\text {v }}$	3.9903 (10)
$\mathrm{Sb4}-\mathrm{Sb4} 4^{\mathrm{vi}}$	2.8437 (9)
$\mathrm{Sb} 4-\mathrm{Sr} 2^{\mathrm{vi}}$	3.6137 (10)
$\mathrm{Sb} 4-\mathrm{Sr} 4^{\text {vi }}$	3.6246 (10)
$\mathrm{Sb} 4-\mathrm{Sr} 5^{\text {vii }}$	3.7722 (9)
$\mathrm{Sb} 4-\mathrm{Sr} 5^{\mathrm{xi}}$	3.9107 (9)
Sb5-In1	2.9311 (6)
$\mathrm{Sb} 5-\mathrm{Sr} 5^{\mathrm{xi}}$	3.3398 (11)
$\mathrm{Sb} 5-\mathrm{Sr} 1^{\mathrm{x}}$	3.3743 (10)
$\mathrm{Sb} 5-\mathrm{Sr} 6^{\mathrm{ix}}$	3.4575 (9)
$\mathrm{Sb} 5-\mathrm{Sr} 3{ }^{\text {iv }}$	3.4584 (9)
$\mathrm{Sb} 5-\mathrm{Sr} 4^{\text {vi }}$	3.4647 (10)
$\mathrm{Sb} 5-\mathrm{Sr} 2^{\mathrm{xi}}$	3.9812 (10)
In $1-\mathrm{Sb} 1^{\text {vi }}$	2.9213 (7)
In1-Sb1 ${ }^{\text {xix }}$	2.9213 (7)
In1—Sb5 ${ }^{\text {xvi }}$	2.9312 (6)
$\mathrm{In} 1-\mathrm{Sr} 5^{\mathrm{xi}}$	3.5475 (9)
$\mathrm{In} 1-\mathrm{Sr} 5^{\text {xx }}$	3.5475 (9)
In 1 - $\mathrm{Sr}{ }^{\text {ix }}$	3.7572 (14)
In1-Sr3 ${ }^{\text {xviii }}$	3.8575 (8)
$\mathrm{In} 1-\mathrm{Sr} 3{ }^{\text {iv }}$	3.8575 (8)
In1-Sr4 ${ }^{\text {xix }}$	3.9844 (9)
In 1-Sr4 ${ }^{\text {vi }}$	3.9844 (9)
$\mathrm{Sb4}{ }^{\text {xiv }}-\mathrm{Sr} 5-\mathrm{Sr}^{2 \mathrm{xv}}$	147.88 (3)
$\mathrm{Sb1}{ }^{\text {xiv }}-\mathrm{Sr} 5-\mathrm{Sr} 2^{\text {xv }}$	100.93 (2)
$\mathrm{Sb1}^{1{ }^{\mathrm{xv}}-\mathrm{Sr} 5-\mathrm{Sr}^{\text {xv }} \text { 2 }}$	48.302 (17)
$\mathrm{Sb4}{ }^{\mathrm{v}}-\mathrm{Sr} 5-\mathrm{Sr} 2^{\mathrm{xv}}$	52.715 (16)
$\mathrm{Sr} 4^{\text {xiv }}-\mathrm{Sr} 5-\mathrm{Sr} 2^{\text {xv }}$	147.88 (3)
Sb3 ${ }^{\text {v }}$ - $\mathrm{Sr} 5-\mathrm{Sr}{ }^{\text {v }}$	127.10 (2)
Sb5 ${ }^{\text {v }}$ - $\mathrm{Sr} 5-\mathrm{Sr}^{\text {² }}$	53.885 (19)

Sb4-Sr1—Sb2 ${ }^{\text {iii }}$
$\mathrm{Sb} 5-\mathrm{Sr} 1-\mathrm{Sb} 2^{\mathrm{i}}{ }^{\text {iii }}$
Sb3 ${ }^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sb}$
Sb3-Sr1-Sb1 $1^{\text {iv }}$
Sb4-Sr1-Sb1 ${ }^{\text {iv }}$
$\mathrm{Sb} 5{ }^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{Sb1}{ }^{\text {iv }}$
Sb3 $3^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sb} 1^{\text {iv }}$
$\mathrm{Sb} 2{ }^{\text {iii }}$ — $\mathrm{Sr} 1-\mathrm{Sb} 1$
$\mathrm{Sb} 3-\mathrm{Sr} 1-\mathrm{Sr} 6^{\text {ii }}$
$\mathrm{Sb} 4-\mathrm{Sr} 1-\mathrm{Sr} 6^{\text {ii }}$
$\mathrm{Sb} 5{ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 6^{\mathrm{ii}}$
$\mathrm{Sb} 3{ }^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr} 6{ }^{\text {ii }}$
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{Sr} 6{ }^{\text {ii }}$
$\mathrm{Sb} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 6{ }^{\text {ii }}$
$\mathrm{Sb} 3-\mathrm{Sr} 1-\mathrm{Sr} 3{ }^{\text {v }}$
$\mathrm{Sb} 4-\mathrm{Sr} 1-\mathrm{Sr}^{\text {V }}$
$\mathrm{Sb} 5{ }^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {v }}$
$\mathrm{Sb} 3{ }^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr} 3{ }^{\text {v }}$
$\mathrm{Sb} 2 \mathrm{iii}^{\text {- }} \mathrm{Sr} 1-\mathrm{Sr} 3^{\text {v }}$
$\mathrm{Sb} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 3^{\text {v }}$
$\mathrm{Sr} 6{ }^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {v }}$
$\mathrm{Sb} 3-\mathrm{Sr} 1-\mathrm{Sr} 2^{\text {vi }}$
Sb4-Sr1-Sr2 ${ }^{\text {vi }}$
$\mathrm{Sb} 5{ }^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{Sr} 2^{\mathrm{vi}}$
Sb3 $3^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {vi }}$
$\mathrm{Sb} 2^{\mathrm{iii}}-\mathrm{Sr} 1-\mathrm{Sr} 2^{\mathrm{vi}}$
$\mathrm{Sb} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 2^{\text {vi }}$
$\mathrm{Sr} 6{ }^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr} 2^{\mathrm{vi}}$
$\mathrm{Sr} 3{ }^{\mathrm{v}}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {vi }}$
$\mathrm{Sb} 3-\mathrm{Sr} 1-\mathrm{Sr} 2$
Sb4-Sr1-Sr2
$\mathrm{Sb} 5{ }^{\text {i }} \mathrm{Sr} 1-\mathrm{Sr} 2$
Sb3 ${ }^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr} 2$
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{Sr} 2$
$\mathrm{Sb} 1{ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 2$
Sr6 ${ }^{\text {ii }} \mathrm{Sr} 1-\mathrm{Sr} 2$
$\mathrm{Sr}{ }^{\mathrm{v}}-\mathrm{Sr} 1-\mathrm{Sr} 2$
$\mathrm{Sr} 2{ }^{\text {vi }}-\mathrm{Sr} 1-\mathrm{Sr} 2$
Sb3-Sr1—Sr5 ${ }^{\text {vii }}$
Sb4-Sr1—Sr5 ${ }^{\text {vii }}$
$\mathrm{Sb} 5{ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 5^{\text {vii }}$

88.12 (2)
98.65 (3)
91.39 (2)
91.54 (2)
69.46 (2)
103.62 (2)
92.64 (2)
157.58 (3)
113.43 (2)
120.51 (3)
57.59 (2)
52.747 (13)
134.78 (3)
62.49 (2)
113.72 (2)
131.28 (3)
57.265 (19)
53.062 (19)
58.21 (2)
138.56 (3)
77.09 (2)
60.385 (19)
59.880 (19)
120.82 (3)
134.15 (3)
51.232 (18)
112.96 (3)
172.95 (3)
108.13 (3)
135.14 (3)
59.643 (19)
128.86 (3)
59.32 (2)
51.188 (17)
113.55 (3)
111.14 (2)
71.65 (2)
75.39 (2)
144.63 (3)
59.01 (2)
121.86 (2)

In ${ }^{\text {xii }}-\mathrm{Sr} 5-\mathrm{Sr} 3^{\mathrm{v}}$	99.74 (3)
$\mathrm{Sb} 1^{\text {xiii }} \mathrm{Sr} 5-\mathrm{Sr}^{\text {v }}$	139.66 (3)
$\mathrm{Sb4}{ }^{\text {xiv }}-\mathrm{Sr} 5-\mathrm{Sr} 3{ }^{\text {v }}$	109.30 (2)
$\mathrm{Sb1}{ }^{\text {xiv }}-\mathrm{Sr} 5-\mathrm{Sr}^{\text {v }}$	51.795 (17)
$\mathrm{Sb1}{ }^{\mathrm{xv}}-\mathrm{Sr} 5-\mathrm{Sr} 3^{\mathrm{v}}$	104.22 (2)
$\mathrm{Sb4}{ }^{\mathrm{v}}$ - $\mathrm{Sr} 5-\mathrm{Sr}{ }^{\mathrm{v}}$	46.706 (17)
$\mathrm{Sr} 4^{\text {xiv }}$ - $\mathrm{Sr} 5-\mathrm{Sr} 3^{\mathrm{v}}$	56.416 (19)
$\mathrm{Sr} 2^{\mathrm{xv}}-\mathrm{Sr} 5-\mathrm{Sr} 3^{\mathrm{v}}$	97.43 (2)
$\mathrm{Sb} 3{ }^{\mathrm{v}}-\mathrm{Sr} 5-\mathrm{Sr} 1^{\text {xiv }}$	52.249 (19)
$\mathrm{Sb5}{ }^{\mathrm{v}}-\mathrm{Sr} 5-\mathrm{Sr} 1^{\text {xiv }}$	131.08 (2)
In1 ${ }^{\text {xii }}$ - $\mathrm{Sr} 5-\mathrm{Sr} 1^{\text {xiv }}$	99.87 (2)
$\mathrm{Sb1}{ }^{\text {xiii }}-\mathrm{Sr} 5-\mathrm{Sr} 1^{\text {xiv }}$	52.369 (18)
$\mathrm{Sb4}{ }^{\text {xiv }}-\mathrm{Sr} 5-\mathrm{Sr} 1^{\text {xiv }}$	47.542 (16)
$\mathrm{Sb1}{ }^{\text {xiv }}-\mathrm{Sr} 5-\mathrm{Sr} 1^{\text {xiv }}$	103.23 (2)
$\mathrm{Sb1}{ }^{\text {xv }}-\mathrm{Sr} 5-\mathrm{Sr1}{ }^{\text {xiv }}$	104.21 (2)
$\mathrm{Sb} 4^{\mathrm{v}}-\mathrm{Sr} 5-\mathrm{Sr}^{\text {xiv }}$	138.51 (3)
$\mathrm{Sr} 4^{\text {xiv }}-\mathrm{Sr} 5-\mathrm{Sr} 1^{\text {xiv }}$	98.04 (2)
$\mathrm{Sr} 2^{\mathrm{xv}}-\mathrm{Sr} 5-\mathrm{Sr} 1^{\mathrm{xiv}}$	101.21 (3)
$\mathrm{Sr} 3{ }^{\mathrm{v}}$ - $\mathrm{Sr} 5-\mathrm{Sr} 1^{\text {xiv }}$	151.57 (2)
$\mathrm{Sb} 3-\mathrm{Sr} 6-\mathrm{Sb} 3^{\mathrm{xvi}}$	177.13 (4)
Sb3-Sr6-Sb5 ${ }^{\text {xvii }}$	87.749 (19)
$\mathrm{Sb3} 3^{\text {xvi }}-\mathrm{Sr} 6-\mathrm{Sb} 5{ }^{\text {xvii }}$	90.321 (19)
$\mathrm{Sb} 3-\mathrm{Sr} 6-\mathrm{Sb} 5{ }^{\mathrm{xv}}$	90.322 (19)
$\mathrm{Sb} 3{ }^{\mathrm{xvi}}-\mathrm{Sr} 6-\mathrm{Sb} 5^{\mathrm{xv}}$	87.749 (19)
$\mathrm{Sb} 5{ }^{\mathrm{xvii}}-\mathrm{Sr} 6-\mathrm{Sb} 5{ }^{\mathrm{xv}}$	95.44 (3)
$\mathrm{Sb3}$-Sr6-In1 ${ }^{\text {xv }}$	88.57 (2)
$\mathrm{Sb} 3^{\text {xvi }}-\mathrm{Sr} 6-\mathrm{In} 1^{\mathrm{xv}}$	88.57 (2)
Sb5 ${ }^{\text {xvii }}$ - $\mathrm{Sr} 6-\mathrm{In} 1^{\mathrm{xv}}$	47.719 (16)
$\mathrm{Sb} 5^{\mathrm{xv}}-\mathrm{Sr} 6-\mathrm{In} 1^{\mathrm{xv}}$	47.719 (16)
Sb3-Sr6-Sr1 ${ }^{\text {xviii }}$	122.728 (16)
$\mathrm{Sb3} 3^{\mathrm{xvi}}-\mathrm{Sr} 6-\mathrm{Sr} 1^{\text {xviii }}$	57.598 (16)
$\mathrm{Sb5} 5^{\mathrm{xvii}}$ - $\mathrm{Sr} 6-\mathrm{Sr1}{ }^{\text {xviii }}$	134.08 (3)
$\mathrm{Sb} 5{ }^{\mathrm{xv}}-\mathrm{Sr} 6-\mathrm{Sr} 1^{\mathrm{xviii}}$	55.475 (16)
In ${ }^{\text {xv }}$-Sr6-Sr1 $1^{\text {xviii }}$	95.50 (2)
Sb3-Sr6-Sr1 ${ }^{\text {iv }}$	57.598 (16)
$\mathrm{Sb3}{ }^{\text {xvi }}-\mathrm{Sr} 6-\mathrm{Sr} 1^{\text {iv }}$	122.728 (16)
$\mathrm{Sb5}{ }^{\text {xvii }}$ - $\mathrm{Sr} 6-\mathrm{Sr}^{\text {iv }}$	55.475 (16)
$\mathrm{Sb5}{ }^{\mathrm{xv}}-\mathrm{Sr} 6-\mathrm{Sr} 1^{\text {iv }}$	134.08 (3)
In 1^{xv} - $\mathrm{Sr} 6-\mathrm{Sr}^{1{ }^{\text {iv }}}$	95.50 (2)
$\mathrm{Sr}^{\text {xviii }}$ - $\mathrm{Sr} 6-\mathrm{Sr} 1^{\text {iv }}$	169.01 (4)
Sb3-Sr6-Sb1 ${ }^{\text {xix }}$	90.94 (2)

Sb3 ${ }^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr}$
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{Sr}$
$\mathrm{Sb1}{ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr}$
Sr $6^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr} 5$
$\mathrm{Sr} 3{ }^{\mathrm{v}}-\mathrm{Sr} 1-\mathrm{Sr} 5^{\text {vii }}$
$\mathrm{Sr} 2^{\text {vi }}-\mathrm{Sr} 1-\mathrm{Sr} 5{ }^{\text {vii }}$
Sr2—Sr1—Sr5 ${ }^{\text {vii }}$
$\mathrm{Sb} 3-\mathrm{Sr} 1-\mathrm{Sr} 2{ }^{\text {iv }}$
Sb4-Sr1-Sr2 ${ }^{\text {iv }}$
$\mathrm{Sb} 5{ }^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{Sr} 2^{\mathrm{iv}}$
Sb3 $3^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr} 2^{\text {iv }}$
$\mathrm{Sb} 2 \mathrm{iii}^{\text {- }} \mathrm{Sr} 1-\mathrm{Sr}$
$\mathrm{Sb} 1{ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr}$
$\mathrm{Sr} 6{ }^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr} 2^{\text {iv }}$
$\mathrm{Sr} 3{ }^{\mathrm{v}}-\mathrm{Sr} 1-\mathrm{Sr}^{2}{ }^{\text {iv }}$
$\mathrm{Sr}^{\text {vii }}$ - $\mathrm{Sr} 1-\mathrm{Sr}^{\text {iv }}$
$\mathrm{Sr} 2-\mathrm{Sr} 1-\mathrm{Sr} 2^{\text {iv }}$
$\mathrm{Sr} 5^{\mathrm{vii}}-\mathrm{Sr} 1-\mathrm{Sr} 2^{\text {iv }}$
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 2-\mathrm{Sb} 1$
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 2-\mathrm{Sb} 4$
$\mathrm{Sb} 1-\mathrm{Sr} 2-\mathrm{Sb} 4$
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 2-\mathrm{Sb}$
$\mathrm{Sb} 1-\mathrm{Sr} 2-\mathrm{Sb} 4{ }^{\text {vi }}$
Sb4-Sr2-Sb4 ${ }^{\text {vi }}$
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 2-\mathrm{Sb}$
$\mathrm{Sb} 1-\mathrm{Sr} 2-\mathrm{Sb} 3{ }^{\text {vi }}$
$\mathrm{Sb} 4-\mathrm{Sr} 2-\mathrm{Sb} 3{ }^{\text {vi }}$
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sb} 3^{\text {vi }}$
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 2-\mathrm{Sb} 3{ }^{\text {ii }}$
$\mathrm{Sb} 1-\mathrm{Sr} 2-\mathrm{Sb} 3{ }^{\text {ii }}$
Sb4-Sr2-Sb3 ${ }^{\text {ii }}$
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sb} 3{ }^{\text {ii }}$
$\mathrm{Sb} 3{ }^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sb} 3{ }^{\text {ii }}$
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {vi }}$
$\mathrm{Sb} 1-\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {vi }}$
Sb4-Sr2-Sr1 ${ }^{\text {vi }}$
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {vi }}$
$\mathrm{Sb} 3{ }^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {vi }}$
Sb3 $3^{\text {ii }}-\mathrm{Sr} 2-\mathrm{Sr1}{ }^{\text {vi }}$
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 2-\mathrm{Sr} 1$
Sb1—Sr2-Sr1

48.352 (18)
113.71 (2)
55.470 (17)
65.50 (2)
100.71 (2)
117.12 (2)
62.599 (19)
56.749 (18)
109.57 (2)
61.937 (18)
113.38 (2)
145.72 (3)
49.425 (17)
60.858 (17)
117.96 (2)
112.12 (2)
162.72 (3)
100.55 (2)
178.44 (3)
86.25 (2)
93.11 (2)
86.09 (2)
94.51 (2)
46.406 (18)
88.74 (2)
92.74 (2)
132.49 (3)
86.14 (2)
91.23 (2)
87.33 (2)
88.47 (2)
134.88 (3)
138.89 (3)
57.205 (18)
124.24 (3)
89.29 (2)
50.998 (18)
49.860 (18)
148.43 (3)
57.150 (18)
121.39 (3)

$\mathrm{Sb3}{ }^{\text {xvi }}-\mathrm{Sr6}-\mathrm{Sb} 1^{\text {xix }}$	91.39 (2)
$\mathrm{Sb5}{ }^{\text {xvii }}-\mathrm{Sr} 6-\mathrm{Sb} 1^{\text {xix }}$	96.647 (14)
$\mathrm{Sb5}{ }^{\text {xv }}-\mathrm{Sr} 6-\mathrm{Sb}^{1{ }^{\text {xix }}}$	167.89 (3)
$\mathrm{In} 1^{\mathrm{xv}}-\mathrm{Sr} 6-\mathrm{Sb} 1^{\text {xix }}$	144.359 (13)
$\mathrm{Sr} 1^{\mathrm{xviii}}$-Sr6-Sb1 $1^{\text {xix }}$	114.34 (3)
$\mathrm{Sr1}{ }^{\text {iv }}$-Sr6-Sb1 ${ }^{\text {xix }}$	55.401 (16)
Sb3-Sr6-Sb1 ${ }^{\text {vi }}$	91.39 (2)
$\mathrm{Sb} 3^{\mathrm{xvi}}-\mathrm{Sr} 6-\mathrm{Sb} 1^{\text {vi }}$	90.94 (2)
$\mathrm{Sb5} 5^{\mathrm{xvii}}-\mathrm{Sr} 6-\mathrm{Sb} 1^{\text {vi }}$	167.89 (3)
$\mathrm{Sb5}{ }^{\mathrm{xv}}-\mathrm{Sr} 6-\mathrm{Sb} 1^{\mathrm{vi}}$	96.647 (14)
In $1^{\text {xv }}-\mathrm{Sr} 6-\mathrm{Sb} 1^{\text {vi }}$	144.359 (13)
$\mathrm{Sr} 1^{\text {xviii }}$ - $\mathrm{Sr} 6-\mathrm{Sb} 1^{\mathrm{vi}}$	55.401 (16)
$\mathrm{Sr} 1^{\text {iv }}-\mathrm{Sr} 6-\mathrm{Sbl}{ }^{\text {vi }}$	114.34 (3)
	71.28 (3)
Sb3-Sr6-Sr2 ${ }^{\text {xix }}$	122.512 (16)
$\mathrm{Sb3}{ }^{\text {xvi }}-\mathrm{Sr} 6-\mathrm{Sr} 2^{\text {xix }}$	58.210 (15)
$\mathrm{Sb5}{ }^{\text {xvii }}-\mathrm{Sr} 6-\mathrm{Sr} 2^{\text {xix }}$	63.240 (15)
$\mathrm{Sb5}{ }^{\text {xv }}-\mathrm{Sr} 6-\mathrm{Sr} 2{ }^{\text {xix }}$	137.52 (2)
$\mathrm{In} 1^{\mathrm{xv}}-\mathrm{Sr} 6-\mathrm{Sr}^{\text {xix }}$	102.325 (18)
$\mathrm{Sr} 1^{\mathrm{xviii}}-\mathrm{Sr} 6-\mathrm{Sr} 2^{\mathrm{xix}}$	112.258 (18)
	65.186 (16)
$\mathrm{Sb1} 1^{\mathrm{xix}}$ - $\mathrm{Sr} 6-\mathrm{Sr} 2^{\mathrm{xix}}$	49.557 (15)
$\mathrm{Sb1} 1^{\mathrm{vi}}-\mathrm{Sr} 6-\mathrm{Sr} 2^{\text {xix }}$	107.56 (3)
$\mathrm{Sb} 3-\mathrm{Sr} 6-\mathrm{Sr}^{\text {vi }}$	58.210 (15)
$\mathrm{Sb3}{ }^{\mathrm{xvi}}-\mathrm{Sr} 6-\mathrm{Sr}^{\text {vi }}$	122.513 (16)
$\mathrm{Sb5}{ }^{\text {xvii }}-\mathrm{Sr} 6-\mathrm{Sr} 2^{\mathrm{vi}}$	137.52 (2)
$\mathrm{Sb} 5^{\mathrm{xv}}-\mathrm{Sr} 6-\mathrm{Sr} 2^{\mathrm{vi}}$	63.240 (15)
In1 ${ }^{\text {xv }}-\mathrm{Sr} 6-\mathrm{Sr} 2^{\text {vi }}$	102.325 (19)
$\mathrm{Sr}^{\text {xviii }}-\mathrm{Sr} 6-\mathrm{Sr} 2^{\mathrm{vi}}$	65.186 (16)
$\mathrm{Sr}^{\text {iv }}$ - $\mathrm{Sr} 6-\mathrm{Sr} 2{ }^{\text {vi }}$	112.258 (18)
$\mathrm{Sb1} 1^{\text {xix }}-\mathrm{Sr} 6-\mathrm{Sr} 2^{\text {vi }}$	107.56 (3)
$\mathrm{Sb} 1^{\text {vi }}$ - $\mathrm{Sr} 6-\mathrm{Sr}^{2}{ }^{\text {vi }}$	49.557 (15)
$\mathrm{Sr}^{2 \mathrm{xix}}-\mathrm{Sr} 6-\mathrm{Sr} 2^{\mathrm{vi}}$	155.35 (4)
$\mathrm{Sb} 3-\mathrm{Sr} 6-\mathrm{Sr} 5^{\mathrm{xx}}$	135.40 (3)
$\mathrm{Sb} 3^{\text {xvi }}-\mathrm{Sr} 6-\mathrm{Sr} 5^{\mathrm{xx}}$	47.463 (18)
$\mathrm{Sb5}{ }^{\mathrm{xvii}}-\mathrm{Sr} 6-\mathrm{Sr} 5^{\mathrm{xx}}$	121.303 (14)
$\mathrm{Sb} 5^{\mathrm{xv}}-\mathrm{Sr} 6-\mathrm{Sr} 5{ }^{\text {xx }}$	116.624 (14)
In1 ${ }^{\text {xv }}-\mathrm{Sr} 6-\mathrm{Sr} 5{ }^{\text {xx }}$	135.988 (15)
$\mathrm{Sr} 1^{\mathrm{xviii}}-\mathrm{Sr} 6-\mathrm{Sr} 5^{\mathrm{xx}}$	62.257 (18)
Sr $1^{\text {iv }}$ - $\mathrm{Sr} 6-\mathrm{Sr} 5^{\mathrm{xx}}$	109.13 (2)
$\mathrm{Sb1}{ }^{\text {xix }}-\mathrm{Sr} 6-\mathrm{Sr} 5^{\mathrm{xx}}$	55.539 (18)

Sb4-Sr2-Sr1	51.015 (19)	$\mathrm{Sb1}{ }^{\mathrm{vi}}$ - $\mathrm{Sr} 6-\mathrm{Sr} 5{ }^{\text {xx }}$	52.908 (17)
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sr} 1$	89.08 (2)	$\mathrm{Sr} 2^{\text {xix }}-\mathrm{Sr} 6-\mathrm{Sr} 5^{\mathrm{xx}}$	59.948 (17)
$\mathrm{Sb} 3{ }^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sr} 1$	145.82 (3)	$\mathrm{Sr} 2^{\mathrm{vi}}$ —Sr6-Sr5 ${ }^{\text {xx }}$	101.17 (2)
$\mathrm{Sb} 3{ }^{\text {ii }}-\mathrm{Sr} 2-\mathrm{Sr} 1$	53.280 (18)	In1 ${ }^{\text {viii }}$-Sb1—Sr2	133.90 (2)
$\mathrm{Sr} 1^{\mathrm{vi}}$ - $\mathrm{Sr} 2-\mathrm{Sr} 1$	102.61 (2)	In1 ${ }^{\text {viii }}$-Sb1—Sr4	78.44 (2)
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 2-\mathrm{Sb} 5^{\text {V }}$	84.32 (2)	Sr 2 - $\mathrm{Sb} 1-\mathrm{Sr} 4$	85.97 (2)
$\mathrm{Sb} 1-\mathrm{Sr} 2-\mathrm{Sb} 5{ }^{\text {V }}$	95.53 (2)	In1 ${ }^{\text {viii }} \mathrm{Sb} 1-\mathrm{Sr} 1^{\text {ii }}$	135.63 (2)
$\mathrm{Sb} 4-\mathrm{Sr} 2-\mathrm{Sb} 5{ }^{\text {v }}$	149.07 (3)	$\mathrm{Sr} 2-\mathrm{Sb} 1-\mathrm{Sr}^{\text {ii }}$	76.73 (2)
$\mathrm{Sb4}{ }^{\text {vi}}-\mathrm{Sr} 2-\mathrm{Sb} 5^{\text {v }}$	160.48 (3)	$\mathrm{Sr} 4-\mathrm{Sb} 1-\mathrm{Sr} 1^{\text {ii }}$	143.72 (2)
$\mathrm{Sb} 3{ }^{\text {vi}}-\mathrm{Sr} 2-\mathrm{Sb} 5^{\text {v }}$	76.71 (2)	$\mathrm{In} 1{ }^{\text {viii }} \mathrm{Sb} 1-\mathrm{Sr} 3{ }^{\text {ii }}$	72.85 (2)
$\mathrm{Sb} 3{ }^{\text {iii }}$ - $\mathrm{Sr} 2-\mathrm{Sb5}{ }^{\text {v }}$	62.406 (17)	$\mathrm{Sr} 2-\mathrm{Sb} 1-\mathrm{Sr} 3{ }^{\text {ii }}$	140.72 (2)
$\mathrm{Sr} 1^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sb5}{ }^{\text {v }}$	109.76 (2)	$\mathrm{Sr} 4-\mathrm{Sb} 1-\mathrm{Sr} 3{ }^{\text {ii }}$	70.61 (2)
$\mathrm{Sr} 1-\mathrm{Sr} 2-\mathrm{Sb5}{ }^{\text {v }}$	99.84 (2)	$\mathrm{Sr} 1^{\mathrm{ii}}$ - $\mathrm{Sb} 1-\mathrm{Sr}^{3 i}{ }^{\text {ii }}$	103.75 (2)
$\mathrm{Sb} 2{ }^{\text {iiii }}-\mathrm{Sr} 2 — \mathrm{Sr} 6^{\text {viii }}$	120.18 (3)	In1 ${ }^{\text {viii }}$ - $\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {xxi }}$	64.221 (17)
$\mathrm{Sb} 1-\mathrm{Sr} 2-\mathrm{Sr6}{ }^{\text {viii }}$	60.66 (2)	$\mathrm{Sr} 2-\mathrm{Sb} 1-\mathrm{Sr} 5^{\mathrm{xxi}}$	138.30 (3)
Sb4-Sr2—Sr6 ${ }^{\text {viii }}$	152.47 (3)	$\mathrm{Sr} 4-\mathrm{Sb} 1-\mathrm{Sr} 5^{\mathrm{xxi}}$	134.85 (3)
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sr} 6^{\text {viii }}$	122.22 (2)	$\mathrm{Sr} 1^{\mathrm{ii}}-\mathrm{Sb} 1-\mathrm{Sr} 5^{\mathrm{xxi}}$	72.16 (2)
Sb3 ${ }^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sr} 6^{\text {viii }}$	48.743 (13)	$\mathrm{Sr} 3{ }^{\mathrm{ii}}-\mathrm{Sb} 1-\mathrm{Sr} 5^{\mathrm{xxi}}$	74.66 (2)
$\mathrm{Sb} 3{ }^{\text {iii }}$ - $\mathrm{Sr} 2-\mathrm{Sr6}{ }^{\text {viii }}$	97.80 (2)	In1 ${ }^{\text {viii }}$ - $\mathrm{Sb} 1-\mathrm{Sr6}{ }^{\text {viii }}$	95.40 (2)
$\mathrm{Sr} 1^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sr} 6^{\text {viii }}$	98.60 (2)	Sr 2 - $\mathrm{Sb} 1-\mathrm{Sr}^{\text {viii }}$	69.78 (2)
Sr1—Sr2-Sr6 ${ }^{\text {viii }}$	148.70 (3)	Sr 4 - $\mathrm{Sb} 1-\mathrm{Sr6}{ }^{\text {viii }}$	139.77 (2)
$\mathrm{Sb5}{ }^{\mathrm{v}}-\mathrm{Sr} 2-\mathrm{Sr6}{ }^{\text {viii }}$	50.847 (18)	$\mathrm{Sr1}^{\text {ii }}-\mathrm{Sb} 1-\mathrm{Sr}^{\text {viii }}$	62.111 (18)
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 2-\mathrm{Sr} 5^{\text {ix }}$	121.87 (2)	Sr3 ${ }^{\text {ii }}-\mathrm{Sb} 1 — \mathrm{Sr}^{\text {viii }}$	145.822 (19)
$\mathrm{Sb} 1-\mathrm{Sr} 2-\mathrm{Sr} 5^{\text {ix }}$	59.623 (19)	$\mathrm{Sr} 5^{\mathrm{xxi}}-\mathrm{Sb} 1-\mathrm{Sr}^{\text {viii }}$	71.380 (18)
$\mathrm{Sb} 4-\mathrm{Sr} 2-\mathrm{Sr} 5^{\text {ix }}$	97.51 (2)	In1 ${ }^{\text {viii }}$ - $\mathrm{Sb} 1-\mathrm{Sr} \mathrm{v}^{\text {vii }}$	138.19 (3)
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sr} 5^{\text {ix }}$	59.433 (18)	$\mathrm{Sr} 2-\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {vii }}$	72.68 (2)
$\mathrm{Sb} 3{ }^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sr} 5^{\text {ix }}$	47.663 (18)	$\mathrm{Sr} 4-\mathrm{Sb} 1-\mathrm{Sr} 5{ }^{\text {vii }}$	71.49 (2)
$\mathrm{Sb} 3{ }^{\text {iii }}-\mathrm{Sr} 2-\mathrm{Sr} 5^{\text {ix }}$	146.58 (3)	$\mathrm{Sr} 1^{\text {ii }}-\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {vii }}$	72.97 (2)
$\mathrm{Sr} 1^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sr} 5^{\text {ix }}$	64.83 (2)	$\mathrm{Sr} 3{ }^{\text {iii }}$ - $\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {vii }}$	70.17 (2)
Sr1—Sr2—Sr5 ${ }^{\text {ix }}$	147.59 (3)	Sr5 ${ }^{\text {xxi }}$ - $\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {vii }}$	121.670 (15)
$\mathrm{Sb5}^{\mathrm{v}}-\mathrm{Sr} 2-\mathrm{Sr} 5{ }^{\text {ix }}$	112.47 (2)	$\mathrm{Sr}^{\text {viii }}$ - $\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {vii }}$	126.29 (3)
$\mathrm{Sr} 6^{\text {viii }} \mathrm{Sr} 2-\mathrm{Sr} 5^{\text {ix }}$	63.174 (19)	In1 ${ }^{\text {viii }}$ - $\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {ix }}$	61.896 (17)
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 2-\mathrm{Sr1}{ }^{\text {ii }}$	125.31 (3)	$\mathrm{Sr} 2-\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {ix }}$	72.08 (2)
$\mathrm{Sb} 1-\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {ii }}$	53.848 (19)	$\mathrm{Sr} 4-\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {ix }}$	72.59 (2)
$\mathrm{Sb} 4-\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {ii }}$	118.86 (2)	Sr1 ${ }^{\text {iii }}$ - $\mathrm{Sb} 1-\mathrm{Sr5}{ }^{\text {ix }}$	129.02 (3)
$\mathrm{Sb4}{ }^{\text {vi }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {ii }}$	147.17 (3)	$\mathrm{Sr} 3{ }^{\text {iii }}$ - $\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {ix }}$	125.88 (3)
Sb3 ${ }^{\text {vi }} \mathrm{Sr} 2-\mathrm{Sr} 1^{\text {ii }}$	102.25 (2)	$\mathrm{Sr} 5{ }^{\mathrm{xxi}}-\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {ix }}$	107.658 (16)
$\mathrm{Sb} 3{ }^{\text {ii }}-\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {ii }}$	46.933 (16)	$\mathrm{Sr}^{\text {viii }}-\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {ix }}$	69.637 (17)
$\mathrm{Sr} 1^{\text {vi }}-\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {ii }}$	151.29 (3)	$\mathrm{Sr} 5^{\text {vii }}$ - $\mathrm{Sb} 1-\mathrm{Sr} 5^{\text {ix }}$	130.627 (14)
$\mathrm{Sr} 1-\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {ii }}$	99.985 (19)	$\mathrm{Sr} 4^{\text {iv }}-\mathrm{Sb} 2-\mathrm{Sr} 4^{\text {xxii }}$	99.32 (4)
Sb5 ${ }^{\text {V }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 1^{\text {ii }}$	48.409 (16)	$\mathrm{Sr} 4^{\mathrm{iv}}-\mathrm{Sb} 2-\mathrm{Sr} 2^{\mathrm{x}}$	153.237 (17)

sup-8

$$
\begin{aligned}
& \mathrm{Sr}^{\text {viii }}-\mathrm{Sr} 2 — \mathrm{Sr}^{\mathrm{ii}} \\
& \text { Sr5 }{ }^{\text {ix }}-\mathrm{Sr} 2-\mathrm{Sr} 1^{\mathrm{ii}} \\
& \mathrm{Sb} 3^{\mathrm{x}}-\mathrm{Sr} 3-\mathrm{Sb} 4 \\
& \mathrm{Sb} 3^{\mathrm{x}}-\mathrm{Sr} 3-\mathrm{Sb} 5^{\mathrm{ii}} \\
& \mathrm{Sb} 4-\mathrm{Sr} 3-\mathrm{Sb} 5^{\mathrm{ii}} \\
& \mathrm{Sb} 3^{\mathrm{x}}-\mathrm{Sr} 3-\mathrm{Sb} 5 \\
& \text { Sb4-Sr3-Sb5 } \\
& \text { Sb5 }{ }^{\text {ii }}-\mathrm{Sr} 3-\mathrm{Sb} 5 \\
& \mathrm{Sb} 3^{\mathrm{x}}-\mathrm{Sr} 3-\mathrm{Sb} 1^{\text {iv }} \\
& \mathrm{Sb} 4-\mathrm{Sr} 3-\mathrm{Sb} 1^{\text {iv }} \\
& \mathrm{Sb} 5^{\mathrm{ii}}-\mathrm{Sr} 3-\mathrm{Sb} 1^{\text {iv }} \\
& \mathrm{Sb} 5-\mathrm{Sr} 3-\mathrm{Sb} 1^{\text {iv }} \\
& \mathrm{Sb} 3^{\mathrm{x}}-\mathrm{Sr} 3-\mathrm{Sb} 2^{\mathrm{ii}} \\
& \mathrm{Sb} 4-\mathrm{Sr} 3-\mathrm{Sb} 2^{\mathrm{ii}} \\
& \mathrm{Sb} 5^{\mathrm{ii}} \text { — } \mathrm{Sr} 3 — \mathrm{Sb} 2^{\mathrm{ii}} \\
& \mathrm{Sb} 5-\mathrm{Sr} 3-\mathrm{Sb} 2^{\mathrm{ii}} \\
& \mathrm{Sb} 1^{\mathrm{iv}}-\mathrm{Sr} 3-\mathrm{Sb} 2^{\mathrm{ii}} \\
& \mathrm{Sb} 3^{\mathrm{x}}-\mathrm{Sr} 3-\mathrm{Sr}^{\mathrm{xi}} \\
& \mathrm{Sb} 4-\mathrm{Sr} 3-\mathrm{Sr}^{\mathrm{xi}} \\
& \mathrm{Sb} 5^{\mathrm{ii}}-\mathrm{Sr} 3-\mathrm{Sr}^{\mathrm{xi}} \\
& \mathrm{Sb} 5-\mathrm{Sr} 3-\mathrm{Srl}^{\mathrm{xi}} \\
& \mathrm{Sb} 1^{\mathrm{iv}}-\mathrm{Sr} 3-\mathrm{Sr}^{\mathrm{xi}} \\
& \mathrm{Sb} 2^{\mathrm{ii}}-\mathrm{Sr} 3-\mathrm{Sr} 1^{\mathrm{xi}} \\
& \text { Sb3 }{ }^{\mathrm{x}} \text { - } \mathrm{Sr} 3-\mathrm{In} 1^{\mathrm{ii}} \\
& \mathrm{Sb} 4-\mathrm{Sr} 3-\mathrm{In} 1^{\mathrm{ii}} \\
& \text { Sb5 } 5^{\text {ii }}-\mathrm{Sr} 3-\mathrm{In} 1^{\mathrm{ii}} \\
& \text { Sb5-Sr3-In1 }{ }^{\text {ii }} \\
& \text { Sb1 } 1^{\text {iv }} \text { - } \mathrm{Sr} 3-\mathrm{In} 1^{\text {ii }} \\
& \mathrm{Sb} 2^{\mathrm{ii}}-\mathrm{Sr} 3-\mathrm{In} 1^{\mathrm{ii}} \\
& \text { Sr1 }{ }^{\mathrm{xi}}-\mathrm{Sr} 3-\mathrm{In} 1^{\mathrm{ii}} \\
& \mathrm{Sb} 3^{\mathrm{x}}-\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{vi}} \\
& \mathrm{Sb} 4-\mathrm{Sr} 3-\mathrm{Sr} 4^{\text {vi }} \\
& \mathrm{Sb} 5^{\mathrm{ii}}-\mathrm{Sr} 3 — \mathrm{Sr} 4^{\text {vi }} \\
& \mathrm{Sb} 5-\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{vi}} \\
& \mathrm{Sb} 1^{\text {iv }}-\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{vi}} \\
& \mathrm{Sb} 2^{\mathrm{ii}}-\mathrm{Sr} 3-\mathrm{Sr} 4^{\text {vi }} \\
& \mathrm{Sr} 1^{\mathrm{xi}}-\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{vi}} \\
& \text { In } 1^{\mathrm{ii}}-\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{vi}} \\
& \text { Sb3 }{ }^{\mathrm{x}}-\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{iv}} \\
& \mathrm{Sb} 4-\mathrm{Sr} 3-\mathrm{Sr}^{\text {iv }}{ }^{\text {V }} \\
& \mathrm{Sb} 5^{\mathrm{ii}}-\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{iv}}
\end{aligned}
$$

53.956 (15)
103.21 (2)
170.71 (3)
87.18 (2)
101.66 (2)
71.732 (19)
99.47 (2)
158.87 (3)
114.47 (3)
69.41 (2)
86.48 (2)
100.75 (2)
92.58 (2)
83.82 (2)
95.49 (2)
87.044 (19)
152.95 (3)
56.998 (19)
126.16 (3)
55.156 (19)
111.20 (2)
139.34 (3)
56.064 (19)
86.35 (2)
101.74 (2)
46.846 (13)
127.60 (2)
46.356 (16)
142.33 (2)
93.33 (2)
111.73 (3)
59.55 (2)
139.37 (3)
54.898 (18)
114.49 (3)
50.027 (18)
104.45 (3)
159.54 (3)
66.24 (2)
113.57 (3)
104.19 (2)

$\mathrm{Sr} 4^{\mathrm{xxii}}-\mathrm{Sb} 2-\mathrm{Sr} 2^{\mathrm{X}}$	88.370 (18)
$\mathrm{Sr} 4^{\text {iv }}-\mathrm{Sb} 2-\mathrm{Sr} 2^{\text {xxiii }}$	88.370 (18)
$\mathrm{Sr} 4^{\mathrm{xxii}}-\mathrm{Sb} 2-\mathrm{Sr} 2^{\mathrm{xxiii}}$	153.237 (17)
$\mathrm{Sr} 2^{\mathrm{x}}-\mathrm{Sb} 2-\mathrm{Sr} 2^{\text {xxiii }}$	96.22 (4)
$\mathrm{Sr} 4^{\mathrm{iv}}-\mathrm{Sb} 2-\mathrm{Sr} 1^{\mathrm{x}}$	85.00 (2)
$\mathrm{Sr} 4^{\mathrm{xxii}}-\mathrm{Sb} 2-\mathrm{Sr}^{\text {x }}$	134.33 (2)
$\mathrm{Sr} 2^{\mathrm{x}}-\mathrm{Sb} 2-\mathrm{Sr1}{ }^{\mathrm{x}}$	71.66 (2)
$\mathrm{Sr}^{\text {xxiii }}$ - $\mathrm{Sb} 2-\mathrm{Sr} 1^{\mathrm{x}}$	71.56 (2)
$\mathrm{Sr} 4^{\text {iv }}-\mathrm{Sb} 2-\mathrm{Sr} 1^{\text {xxiii }}$	134.33 (2)
$\mathrm{Sr} 4^{\mathrm{xxii}}-\mathrm{Sb} 2-\mathrm{Sr} 1^{\mathrm{xxiii}}$	85.00 (2)
$\mathrm{Sr} 2^{\mathrm{x}}-\mathrm{Sb} 2-\mathrm{Sr1}{ }^{\text {xxiii }}$	71.56 (2)
$\mathrm{Sr} 2^{\mathrm{xxiii}}-\mathrm{Sb} 2-\mathrm{Sr1}{ }^{\text {xxiii }}$	71.66 (2)
$\mathrm{Sr1}{ }^{\mathrm{x}}-\mathrm{Sb} 2-\mathrm{Sr1}{ }^{\text {xxiii }}$	123.61 (4)
$\mathrm{Sr} 4^{\text {iv }}-\mathrm{Sb} 2-\mathrm{Sr} 3{ }^{\text {xxii }}$	71.70 (2)
$\mathrm{Sr} 4^{\text {xxii }}-\mathrm{Sb} 2-\mathrm{Sr} 3{ }^{\text {xxii }}$	74.62 (2)
$\mathrm{Sr} 2^{\mathrm{x}}-\mathrm{Sb} 2-\mathrm{Sr} 3^{\mathrm{xxii}}$	134.96 (2)
$\mathrm{Sr} 2^{\mathrm{xxiii}}-\mathrm{Sb} 2-\mathrm{Sr} 3{ }^{\text {xxii }}$	83.74 (2)
$\mathrm{Sr} 1^{\mathrm{x}}$ - $\mathrm{Sb} 2-\mathrm{Sr} 3^{\mathrm{xxii}}$	146.491 (17)
$\mathrm{Sr}^{\text {xxiii }}-\mathrm{Sb} 2-\mathrm{Sr} 3{ }^{\text {xxii }}$	65.730 (16)
$\mathrm{Sr} 4^{\text {iv }}-\mathrm{Sb} 2-\mathrm{Sr} 3{ }^{\text {iv }}$	74.62 (2)
$\mathrm{Sr} 4^{\mathrm{xxii}}-\mathrm{Sb} 2-\mathrm{Sr} 3{ }^{\text {iv }}$	71.70 (2)
$\mathrm{Sr} 2^{\mathrm{x}}-\mathrm{Sb} 2-\mathrm{Sr} 3^{\text {iv }}$	83.74 (2)
$\mathrm{Sr} 2^{\text {xxiii }}-\mathrm{Sb} 2-\mathrm{Sr} 3^{\text {iv }}$	134.96 (2)
$\mathrm{Sr} 1^{\mathrm{x}}-\mathrm{Sb} 2-\mathrm{Sr} 3{ }^{\text {iv }}$	65.730 (16)
$\mathrm{Sr} 1^{\mathrm{xxiii}}-\mathrm{Sb} 2-\mathrm{Sr} 3{ }^{\text {iv }}$	146.491 (16)
$\mathrm{Sr} 3{ }^{\text {xxii }} \mathrm{Sb} 2-\mathrm{Sr} 3{ }^{\text {iv }}$	126.84 (4)
Sr1—Sb3—Sr6	142.80 (2)
$\mathrm{Sr} 1-\mathrm{Sb} 3-\mathrm{Sr} 5^{\text {xi }}$	85.97 (2)
$\mathrm{Sr} 6-\mathrm{Sb} 3-\mathrm{Sr} 5{ }^{\text {xi }}$	85.23 (3)
$\mathrm{Sr} 1-\mathrm{Sb} 3-\mathrm{Sr} 3{ }^{\text {i }}$	111.91 (3)
$\mathrm{Sr} 6-\mathrm{Sb} 3-\mathrm{Sr} 3{ }^{\text {i }}$	94.30 (3)
$\mathrm{Sr} 5{ }^{\text {xi}}-\mathrm{Sb} 3-\mathrm{Sr} 3^{\mathrm{i}}$	147.30 (2)
$\mathrm{Sr} 1-\mathrm{Sb} 3-\mathrm{Sr}^{\text {iv }}$	143.14 (2)
Sr6-Sb3-Sr1 ${ }^{\text {iv }}$	69.655 (18)
$\mathrm{Sr} 5^{\text {xi }}-\mathrm{Sb} 3-\mathrm{Sr} 1^{\text {iv }}$	79.40 (2)
$\mathrm{Sr} 3{ }^{\text {i }}$ - $\mathrm{Sb} 3-\mathrm{Sr}^{\text {iv }}$	69.94 (2)
$\mathrm{Sr} 1-\mathrm{Sb} 3-\mathrm{Sr} 2{ }^{\text {vi }}$	69.75 (2)
$\mathrm{Sr} 6-\mathrm{Sb} 3-\mathrm{Sr} 2^{\text {vi }}$	73.047 (18)
$\mathrm{Sr} 5^{\mathrm{xi}}-\mathrm{Sb} 3-\mathrm{Sr}^{\mathrm{vi}}$	75.85 (2)
$\mathrm{Sr} 3{ }^{\mathrm{i}}-\mathrm{Sb} 3-\mathrm{Sr2}{ }^{\text {vi }}$	135.22 (2)
Sr1 ${ }^{\text {iv }}-\mathrm{Sb} 3-\mathrm{Sr}^{\text {2i }}$	136.45 (2)

$\mathrm{Sb} 5-\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{iv}}$
$\mathrm{Sb} 2{ }^{\mathrm{ii}}-\mathrm{Sr} 3$
$\mathrm{Sr} 1^{\text {xi }}-\mathrm{Sr} 3-\mathrm{Sr} 4$
$\operatorname{In} 1^{\mathrm{ii}}-\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{iv}}$
$\mathrm{Sr} 4{ }^{\text {vi }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 4^{\text {iv }}$
$\mathrm{Sb} 3{ }^{\mathrm{x}}-\mathrm{Sr} 3-\mathrm{Sr} 4$
Sb4-Sr3-Sr4
$\mathrm{Sb5} 5$ - $\mathrm{Sr} 3-\mathrm{Sr} 4$
Sb5-Sr3-Sr4
$\mathrm{Sb1}{ }^{\text {iv }}-\mathrm{Sr} 3-\mathrm{Sr} 4$
$\mathrm{Sb} 2{ }^{\text {ii }}-\mathrm{Sr} 3-\mathrm{Sr} 4$
$\mathrm{Sr} 1^{\text {xi }}-\mathrm{Sr} 3-\mathrm{Sr} 4$
In1 ${ }^{\text {ii }}$-Sr3-Sr4
$\mathrm{Sr} 4{ }^{\text {vi }} \mathrm{Sr} 3-\mathrm{Sr} 4$
$\mathrm{Sr} 4^{\text {iv }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 4$
$\mathrm{Sb} 3{ }^{\mathrm{x}}-\mathrm{Sr} 3-\mathrm{Sr} 5^{\mathrm{xi}}$
$\mathrm{Sb} 4-\mathrm{Sr} 3-\mathrm{Sr} 5^{\mathrm{xi}}$
$\mathrm{Sb} 5{ }^{\mathrm{ii}}-\mathrm{Sr} 3-\mathrm{Sr} 5{ }^{\text {xi }}$
$\mathrm{Sb5}-\mathrm{Sr} 3-\mathrm{Sr} 5^{\mathrm{xi}}$
$\mathrm{Sb} 1^{\text {iv }}-\mathrm{Sr} 3-\mathrm{Sr} 5^{\text {xi }}$
$\mathrm{Sb} 2{ }^{\text {ii }}-\mathrm{Sr} 3-\mathrm{Sr} 5^{\mathrm{xi}}$
$\mathrm{Sr} 1^{\mathrm{xi}}-\mathrm{Sr} 3-\mathrm{Sr} 5^{\mathrm{xi}}$
In $1^{\text {ii }}-\mathrm{Sr} 3-\mathrm{Sr} 5^{\mathrm{xi}}$
$\mathrm{Sr} 4^{\mathrm{vi}}$ - $\mathrm{Sr} 3-\mathrm{Sr} 5^{\mathrm{xi}}$
$\mathrm{Sr} 4^{\mathrm{iv}}-\mathrm{Sr} 3-\mathrm{Sr} 5^{\mathrm{xi}}$
$\mathrm{Sr} 4-\mathrm{Sr} 3-\mathrm{Sr} 5^{\text {xi }}$
$\mathrm{Sb} 2{ }^{\mathrm{ii}}-\mathrm{Sr} 4-\mathrm{Sb} 1$
$\mathrm{Sb} 2{ }^{\mathrm{ii}}-\mathrm{Sr} 4-\mathrm{Sb} 5^{\text {vi }}$
$\mathrm{Sb} 1-\mathrm{Sr} 4-\mathrm{Sb5} 5^{\mathrm{vi}}$
$\mathrm{Sb} 2{ }^{\text {ii }}-\mathrm{Sr} 4-\mathrm{Sb4}$
$\mathrm{Sb} 1-\mathrm{Sr} 4-\mathrm{Sb} 4$
$\mathrm{Sb5}{ }^{\text {vi }}-\mathrm{Sr} 4 — \mathrm{Sb4}$
$\mathrm{Sb2} 2^{\mathrm{ii}}-\mathrm{Sr} 4-\mathrm{Sb} 4^{\text {vi }}$
$\mathrm{Sb} 1-\mathrm{Sr} 4-\mathrm{Sb4} 4^{\text {vi }}$
$\mathrm{Sb} 5^{\mathrm{vi}}-\mathrm{Sr} 4-\mathrm{Sb} 4^{\mathrm{v}}$
$\mathrm{Sb4}-\mathrm{Sr} 4-\mathrm{Sb4}{ }^{\text {vi }}$
$\mathrm{Sb} 2{ }^{\text {ii }}-\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {vi }}$
$\mathrm{Sb} 1-\mathrm{Sr} 4-\mathrm{Sr} 3^{\text {vi }}$
$\mathrm{Sb5}{ }^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sr}^{\text {2i }}$
$\mathrm{Sb} 4-\mathrm{Sr} 4-\mathrm{Sr} 3$

66.52 (2)
52.740 (17)
149.83 (3)
118.91 (3)
61.098 (17)
116.26 (2)
126.02 (3)
56.930 (19)
65.64 (2)
128.28 (3)
109.53 (2)
48.779 (16)
69.37 (2)
103.30 (2)
74.40 (2)
161.36 (3)
112.48 (2)
61.64 (2)
143.80 (3)
50.174 (18)
58.031 (18)
112.77 (2)
160.88 (3)
102.23 (2)
62.750 (19)
61.549 (19)
116.71 (2)
176.25 (3)
93.68 (2)
87.72 (2)
83.95 (2)
92.73 (2)
139.72 (3)
83.10 (2)
93.35 (2)
93.20 (2)
46.539 (18)
58.277 (18)
120.14 (3)
56.052 (19)
90.09 (2)

$\mathrm{Sr} 1-\mathrm{Sb} 3-\mathrm{Sr} 2^{\text {iv }}$	76.32 (2)
$\mathrm{Sr} 6-\mathrm{Sb} 3-\mathrm{Sr} 2^{\text {iv }}$	135.47 (2)
$\mathrm{Sr} 5{ }^{\text {xi }}-\mathrm{Sb} 3-\mathrm{Sr} 2^{\text {iv }}$	76.01 (2)
$\mathrm{Sr} 3{ }^{\text {i }}-\mathrm{Sb} 3-\mathrm{Sr} 2^{\text {iv }}$	81.83 (2)
$\mathrm{Sr1}^{\text {iv }}$ - $\mathrm{Sb} 3-\mathrm{Sr} 2^{\text {iv }}$	67.40 (2)
$\mathrm{Sr} 2{ }^{\text {vi }}-\mathrm{Sb} 3-\mathrm{Sr}^{\text {iv }}$	136.90 (2)
$\mathrm{Sr} 1-\mathrm{Sb} 3-\mathrm{Sr} 4^{\text {v }}$	76.78 (2)
$\mathrm{Sr} 6-\mathrm{Sb} 3-\mathrm{Sr} 4^{\text {v }}$	91.57 (2)
$\mathrm{Sr} 5^{\mathrm{xi}}-\mathrm{Sb} 3-\mathrm{Sr} 4^{\mathrm{v}}$	146.78 (2)
$\mathrm{Sr} 3{ }^{\text {i }}-\mathrm{Sb} 3-\mathrm{Sr} 4^{\text {v }}$	65.87 (2)
$\mathrm{Sr} 1^{\text {iv }}-\mathrm{Sb} 3-\mathrm{Sr} 4^{\text {v }}$	130.15 (2)
$\mathrm{Sr} 2^{\mathrm{vi}}$ - $\mathrm{Sb} 3-\mathrm{Sr} 4^{\text {v }}$	71.615 (18)
$\mathrm{Sr} 2^{\text {iv }}-\mathrm{Sb} 3-\mathrm{Sr} 4^{\text {v }}$	125.39 (2)
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sb} 4-\mathrm{Sr} 3$	122.558 (17)
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sb4} 4-\mathrm{Sr} 1$	120.068 (16)
Sr3-Sb4-Sr1	117.22 (2)
$\mathrm{Sb4}{ }^{\text {vi }} \mathrm{Sb} 4-\mathrm{Sr} 4$	67.693 (18)
Sr3-Sb4-Sr4	73.72 (2)
Sr1—Sb4-Sr4	137.42 (2)
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sb} 4-\mathrm{Sr} 2$	66.976 (18)
Sr3-Sb4-Sr2	142.01 (2)
Sr1—Sb4-Sr2	69.34 (2)
$\mathrm{Sr} 4-\mathrm{Sb} 4-\mathrm{Sr} 2$	78.488 (19)
$\mathrm{Sb4} 4^{\mathrm{vi}}-\mathrm{Sb} 4-\mathrm{Sr}^{2} \mathrm{vi}$	66.620 (19)
$\mathrm{Sr} 3-\mathrm{Sb} 4-\mathrm{Sr} 2^{\text {vi }}$	135.10 (2)
$\mathrm{Sr} 1-\mathrm{Sb} 4-\mathrm{Sr}^{\text {vi }}$	69.12 (2)
$\mathrm{Sr} 4-\mathrm{Sb} 4-\mathrm{Sr} 2^{\text {vi }}$	134.29 (2)
$\mathrm{Sr} 2-\mathrm{Sb} 4-\mathrm{Sr} 2^{\text {vi }}$	82.87 (3)
$\mathrm{Sb4} 4^{\mathrm{vi}}$ - $\mathrm{Sb4} 4-\mathrm{Sr} 4^{\text {vi }}$	65.767 (19)
$\mathrm{Sr} 3-\mathrm{Sb} 4-\mathrm{Sr} 4{ }^{\text {vi }}$	70.16 (2)
$\mathrm{Sr} 1-\mathrm{Sb} 4-\mathrm{Sr} 4^{\text {vi }}$	137.39 (2)
$\mathrm{Sr} 4-\mathrm{Sb} 4-\mathrm{Sr} 4{ }^{\text {vi }}$	85.09 (3)
$\mathrm{Sr} 2-\mathrm{Sb} 4-\mathrm{Sr} 4{ }^{\text {vi }}$	132.72 (2)
$\mathrm{Sr} 2{ }^{\text {vi }}-\mathrm{Sb} 4-\mathrm{Sr} 4{ }^{\text {vi }}$	77.696 (18)
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sb4} 4-\mathrm{Sr} 5^{\text {vii }}$	123.70 (3)
$\mathrm{Sr} 3-\mathrm{Sb} 4-\mathrm{Sr} 5^{\text {vii }}$	76.36 (2)
Sr1-Sb4-Sr5 ${ }^{\text {vii }}$	73.45 (2)
$\mathrm{Sr} 4-\mathrm{Sb} 4-\mathrm{Sr} 5^{\text {vii }}$	69.68 (2)
$\mathrm{Sr} 2-\mathrm{Sb} 4-\mathrm{Sr} 5^{\text {vii }}$	69.94 (2)
$\mathrm{Sr}^{\text {vi }}$ —Sb4- $\mathrm{Sr} 5{ }^{\text {vii }}$	139.57 (3)
$\mathrm{Sr} 4^{\text {vi }}-\mathrm{Sb} 4-\mathrm{Sr} 5{ }^{\text {vii }}$	142.60 (3)

supplementary materials

$\mathrm{Sb4} \mathbf{V}^{\mathrm{vi}}-\mathrm{Sr} 4-\mathrm{Sr} 3^{\text {vi }}$	50.294 (18)
$\mathrm{Sb} 2{ }^{\text {iii }}$ - $\mathrm{Sr} 4-\mathrm{Sr}^{3 i}{ }^{\text {ii }}$	126.62 (3)
$\mathrm{Sb} 1-\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {ii }}$	56.65 (2)
$\mathrm{Sb} 5{ }^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {ii }}$	94.16 (2)
$\mathrm{Sb} 4-\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {ii }}$	119.38 (3)
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {ii }}$	148.70 (3)
$\mathrm{Sr}^{\text {vi }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {ii }}$	149.77 (3)
$\mathrm{Sb} 2{ }^{\text {ii }}$-Sr4—In1 ${ }^{\text {viii }}$	136.56 (3)
Sb1—Sr4-In1 ${ }^{\text {viii }}$	45.916 (16)
Sb5 ${ }^{\text {vi }}$-Sr4—In1 ${ }^{\text {viii }}$	45.685 (15)
Sb4-Sr4-In1 ${ }^{\text {viii }}$	135.19 (3)
$\mathrm{Sb4} \mathrm{vi}^{\text {- }}$ Sr4—-In1 $1^{\text {viii }}$	109.33 (2)
Sr3 ${ }^{\text {vi }}$-Sr4—In1 ${ }^{\text {viii }}$	97.15 (2)
Sr3 ${ }^{\text {ii }}$ - Sr 4 - $\mathrm{In} 1{ }^{\text {viii }}$	57.947 (17)
$\mathrm{Sb} 2{ }^{\text {ii }}-\mathrm{Sr} 4-\mathrm{Sb} 3^{\text {xi }}$	82.68 (2)
$\mathrm{Sb} 1-\mathrm{Sr} 4-\mathrm{Sb} 3{ }^{\text {xi }}$	101.02 (2)
$\mathrm{Sb} 5^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sb3}{ }^{\text {xi }}$	78.28 (2)
$\mathrm{Sb4}-\mathrm{Sr} 4-\mathrm{Sb} 3{ }^{\text {xi }}$	140.45 (3)
$\mathrm{Sb} 4^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sb3}{ }^{\text {xi }}$	162.89 (3)
$\mathrm{Sr} 3{ }^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sb} 3{ }^{\text {xi }}$	113.45 (2)
$\mathrm{Sr} 3{ }^{\text {iii }}-\mathrm{Sr} 4-\mathrm{Sb} 3{ }^{\text {xi }}$	47.883 (17)
In1 ${ }^{\text {viii }}-\mathrm{Sr} 4-\mathrm{Sb3} 3^{\text {xi }}$	75.34 (2)
$\mathrm{Sb} 2{ }^{\text {iii }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 3$	56.602 (18)
$\mathrm{Sb} 1-\mathrm{Sr} 4-\mathrm{Sr} 3$	122.18 (3)
$\mathrm{Sb} 5{ }^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sr} 3$	150.04 (3)
$\mathrm{Sb} 4-\mathrm{Sr} 4-\mathrm{Sr} 3$	49.353 (18)
$\mathrm{Sb4}{ }^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sr} 3$	87.23 (2)
Sr3 ${ }^{\text {vi }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 3$	103.91 (2)
$\mathrm{Sr} 3{ }^{\text {ii }} \mathrm{Sr} 4-\mathrm{Sr} 3$	100.919 (19)
In1 ${ }^{\text {viii }}$-Sr4-Sr3	158.65 (2)
$\mathrm{Sb} 3{ }^{\text {xi }}-\mathrm{Sr} 4-\mathrm{Sr} 3$	92.84 (2)
$\mathrm{Sb} 2{ }^{\text {iii }}-\mathrm{Sr} 4-\mathrm{Sr} 5{ }^{\text {vii }}$	119.86 (2)
$\mathrm{Sb} 1-\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {vii }}$	59.208 (19)
$\mathrm{Sb5}{ }^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {vii }}$	145.92 (3)
$\mathrm{Sb4}-\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {vii }}$	57.395 (18)
$\mathrm{Sb4} 4^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sr} 5{ }^{\text {vii }}$	96.50 (2)
$\mathrm{Sr} 3{ }^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sr} 5{ }^{\text {vii }}$	146.27 (3)
$\mathrm{Sr} 3{ }^{\text {iii }}-\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {vii }}$	62.03 (2)
In1 ${ }^{\text {viii }}$-Sr4—Sr5 ${ }^{\text {vii }}$	100.44 (2)
$\mathrm{Sb} 3^{\text {xi }}-\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {vii }}$	98.80 (2)
$\mathrm{Sr} 3-\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {vii }}$	63.297 (19)

$\mathrm{Sb4} \mathrm{~V}^{\mathrm{vi}}-\mathrm{Sb4}-\mathrm{Sr} 5^{\mathrm{xi}}$	120.45 (2)
$\mathrm{Sr} 3-\mathrm{Sb} 4-\mathrm{Sr} 5^{\mathrm{xi}}$	71.66 (2)
$\mathrm{Sr} 1-\mathrm{Sb} 4-\mathrm{Sr} 5^{\text {xi }}$	74.31 (2)
$\mathrm{Sr} 4-\mathrm{Sb} 4-\mathrm{Sr} 5^{\mathrm{xi}}$	141.95 (3)
$\mathrm{Sr} 2-\mathrm{Sb} 4-\mathrm{Sr} 5^{\mathrm{xi}}$	139.55 (3)
$\mathrm{Sr} 2^{\mathrm{vi}}-\mathrm{Sb} 4-\mathrm{Sr} 5^{\text {xi }}$	67.85 (2)
$\mathrm{Sr} 4^{\mathrm{vi}}-\mathrm{Sb} 4-\mathrm{Sr} 5{ }^{\text {xi }}$	68.76 (2)
$\mathrm{Sr} 5^{\text {vii }} \mathrm{Sb} 4-\mathrm{Sr} 5^{\mathrm{xi}}$	115.834 (14)
$\mathrm{In} 1-\mathrm{Sb} 5-\mathrm{Sr} 5^{\mathrm{xi}}$	68.55 (2)
In 1-Sb5-Sr1 ${ }^{\text {x }}$	123.97 (2)
$\mathrm{Sr} 5{ }^{\text {xi}}-\mathrm{Sb} 5-\mathrm{Sr} 1^{\mathrm{x}}$	136.52 (2)
In1-Sb5-Sr6 ${ }^{\text {ix }}$	71.51 (2)
$\mathrm{Sr} 5^{\text {xi }}-\mathrm{Sb} 5-\mathrm{Sr6}{ }^{\text {ix }}$	139.88 (2)
$\mathrm{Sr} 1^{\mathrm{x}}$-Sb5-Sr6 ${ }^{\text {ix }}$	66.94 (2)
$\mathrm{In} 1-\mathrm{Sb} 5-\mathrm{Sr} 3{ }^{\text {iv }}$	73.754 (18)
$\mathrm{Sr} 5^{\text {xi }}-\mathrm{Sb} 5-\mathrm{Sr} 3{ }^{\text {iv }}$	79.58 (2)
$\mathrm{Sr} 1^{\mathrm{x}}$ - $\mathrm{Sb} 5-\mathrm{Sr} 3{ }^{\text {iv }}$	67.577 (18)
$\mathrm{Sr}^{6}{ }^{\text {ix }}$-Sb5- $\mathrm{Sr} 3^{\text {iv }}$	85.992 (18)
$\mathrm{In} 1-\mathrm{Sb} 5-\mathrm{Sr} 4^{\text {vi }}$	76.562 (19)
$\mathrm{Sr}{ }^{\text {xi }}-\mathrm{Sb} 5-\mathrm{Sr4}{ }^{\text {vi }}$	77.52 (2)
$\mathrm{Sr} 1^{\mathrm{x}}$ - $\mathrm{Sb} 5-\mathrm{Sr} 4^{\mathrm{vi}}$	142.88 (2)
$\mathrm{Sr} 6^{\mathrm{ix}}-\mathrm{Sb} 5-\mathrm{Sr} 4^{\text {vi }}$	96.94 (2)
$\mathrm{Sr}^{3}{ }^{\text {iv }}-\mathrm{Sb} 5-\mathrm{Sr} 4{ }^{\text {vi }}$	147.51 (2)
In1-Sb5-Sr3	134.79 (2)
$\mathrm{Sr} 5^{\mathrm{xi}}$-Sb5-Sr3	75.94 (2)
Sr1 ${ }^{\mathrm{x}}$-Sb5-Sr3	101.00 (2)
Sr6 ${ }^{\text {ix }}$-Sb5-Sr3	139.64 (2)
$\mathrm{Sr} 3{ }^{\text {iv }}$ - $\mathrm{Sb} 5-\mathrm{Sr} 3$	126.475 (18)
$\mathrm{Sr} 4^{\mathrm{vi}}-\mathrm{Sb} 5-\mathrm{Sr} 3$	69.05 (2)
$\mathrm{In} 1-\mathrm{Sb} 5-\mathrm{Sr} 2^{\mathrm{xi}}$	123.18 (2)
$\mathrm{Sr} 5^{\mathrm{xi}}$ - $\mathrm{Sb} 5-\mathrm{Sr} 2{ }^{\text {xi }}$	143.65 (2)
$\mathrm{Sr} 1^{\mathrm{x}}-\mathrm{Sb} 5-\mathrm{Sr} 2^{\mathrm{xi}}$	69.65 (2)
$\mathrm{Sr} 6^{\mathrm{ix}}$ - $\mathrm{Sb} 5-\mathrm{Sr} 2^{\text {xi }}$	65.912 (19)
$\mathrm{Sr}^{3}{ }^{\text {iv }}-\mathrm{Sb} 5-\mathrm{Sr}^{\text {xi }}$	135.39 (2)
$\mathrm{Sr} 4^{\text {vi }}-\mathrm{Sb} 5-\mathrm{Sr} 2{ }^{\text {xi }}$	73.244 (19)
$\mathrm{Sr} 3-\mathrm{Sb} 5-\mathrm{Sr} 2^{\text {xi }}$	73.76 (2)
$\mathrm{Sb} 1^{\mathrm{vi}}-\mathrm{In} 1-\mathrm{Sb} 1^{\text {xix }}$	97.92 (3)
$\mathrm{Sb1}{ }^{\text {vi }}$ - $\mathrm{In} 1-\mathrm{Sb} 5$	107.767 (15)
$\mathrm{Sb1}{ }^{\text {xix }}$ - $\mathrm{In} 1-\mathrm{Sb} 5$	109.632 (15)
Sb1 ${ }^{\text {vi }}$ - $\mathrm{In} 1-\mathrm{Sb5}{ }^{\text {xvi }}$	109.632 (15)
$\mathrm{Sb1} 1^{\mathrm{xix}}$ - $\mathrm{In} 1-\mathrm{Sb5} 5^{\text {xvi }}$	107.768 (15)

$\mathrm{Sb} 2{ }^{\text {ii }}-\mathrm{Sr} 4-\mathrm{Sr} 5{ }^{\text {ix }}$	119.92 (2)
$\mathrm{Sb} 1-\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {ix }}$	58.662 (19)
$\mathrm{Sb5} 5^{\mathrm{vi}}-\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {ix }}$	49.929 (19)
$\mathrm{Sb} 4-\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {ix }}$	97.03 (2)
$\mathrm{Sb4} 4^{\mathrm{vi}}-\mathrm{Sr} 4-\mathrm{Sr} 5^{\mathrm{ix}}$	58.800 (18)
$\mathrm{Sr} 3{ }^{\text {vi }}-\mathrm{Sr} 4-\mathrm{Sr} 5{ }^{\text {ix }}$	61.65 (2)
$\mathrm{Sr} 3{ }^{\text {iii }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {ix }}$	104.92 (2)
In viii- $^{\text {dra }}$ - $4-\mathrm{Sr} 5^{\text {ix }}$	50.828 (15)
$\mathrm{Sb} 3{ }^{\text {xi }}-\mathrm{Sr} 4-\mathrm{Sr} 5^{\text {ix }}$	121.84 (2)
$\mathrm{Sr} 3-\mathrm{Sr} 4$ - $\mathrm{Sr} 5^{\text {ix }}$	145.18 (3)
$\mathrm{Sr} 5{ }^{\text {vii }} \mathrm{Sr} 4-\mathrm{Sr} 5^{\text {ix }}$	109.80 (3)
Sb3 ${ }^{\text {v }}$ - $\mathrm{Sr} 5-\mathrm{Sb5}{ }^{\text {v }}$	172.93 (3)
Sb3 ${ }^{\text {v }}$-Sr5-In $1^{\text {xii }}$	125.08 (3)
Sb5 ${ }^{\text {v }}$-Sr5-In1 $1^{\text {xii }}$	50.264 (19)
$\mathrm{Sb3}{ }^{\mathrm{v}}$ - $\mathrm{Sr} 5-\mathrm{Sb} 1^{\text {xiii }}$	93.22 (2)
$\mathrm{Sb5}{ }^{\mathrm{v}}$-Sr5-Sb1 ${ }^{\text {xiii }}$	86.23 (2)
In1 ${ }^{\text {xii }}$-Sr5-Sb1 ${ }^{\text {xiii }}$	47.861 (14)
$\mathrm{Sb} 3{ }^{\mathrm{v}}$ - $\mathrm{Sr} 5-\mathrm{Sb4}{ }^{\text {xiv }}$	92.45 (2)
$\mathrm{Sb5}{ }^{\mathrm{v}}$ - $\mathrm{Sr} 5-\mathrm{Sb4} 4^{\text {xiv }}$	93.55 (2)
In1 ${ }^{\text {xii }}-\mathrm{Sr} 5-\mathrm{Sb} 4^{\text {xiv }}$	97.74 (2)
$\mathrm{Sb1} 1^{\text {xiii }} \mathrm{Sr} 5-\mathrm{Sb4} 4^{\text {xiv }}$	62.555 (16)
$\mathrm{Sb} 3{ }^{\mathrm{v}}$-Sr5-Sb1 ${ }^{\text {xiv }}$	85.95 (2)
$\mathrm{Sb5}{ }^{\mathrm{v}}$ - $\mathrm{Sr} 5-\mathrm{Sb} 1^{\text {xiv }}$	98.49 (2)
In $1^{\text {xii }}-\mathrm{Sr} 5-\mathrm{Sb} 1^{\text {xiv }}$	148.75 (3)
$\mathrm{Sb1} 1^{\text {xiii }} \mathrm{Sr} 5-\mathrm{Sb} 1^{\text {xiv }}$	145.45 (2)
$\mathrm{Sb4} 4^{\text {xiv }}$ - $\mathrm{Sr} 5-\mathrm{Sb} 1^{\text {xiv }}$	82.951 (18)
$\mathrm{Sb} 3{ }^{\mathrm{v}}-\mathrm{Sr} 5-\mathrm{Sb} 1^{\mathrm{xv}}$	90.67 (2)
$\mathrm{Sb5}{ }^{\mathrm{v}}-\mathrm{Sr} 5-\mathrm{Sb1}{ }^{\text {xv }}$	82.44 (2)
In1 ${ }^{\text {xii }}$ - $\mathrm{Sr} 5-\mathrm{Sb}^{1{ }^{\mathrm{xv}} \text { (}}$	46.585 (14)
$\mathrm{Sb1} 1^{\text {xiii }} \mathrm{Sr} 5-\mathrm{Sb} 1^{\mathrm{xv}}$	72.325 (16)
$\mathrm{Sb4} 4^{\mathrm{xiv}}-\mathrm{Sr} 5-\mathrm{Sb} 1^{\mathrm{xv}}$	134.87 (2)
$\mathrm{Sb1} 1^{\text {xiv }}-\mathrm{Sr} 5-\mathrm{Sb1} 1^{\mathrm{xv}}$	142.17 (2)
Sb3 ${ }^{\text {v }}$ - $\mathrm{Sr} 5-\mathrm{Sb4}{ }^{\text {v }}$	87.26 (2)
$\mathrm{Sb5}{ }^{\mathrm{v}}$ - $\mathrm{Sr} 5-\mathrm{Sb4}{ }^{\mathrm{v}}$	90.21 (2)
$\mathrm{In} 1^{\text {xii }}-\mathrm{Sr} 5-\mathrm{Sb} 4^{\text {v }}$	112.67 (2)
$\mathrm{Sb} 1^{\text {xiii }}-\mathrm{Sr} 5-\mathrm{Sb} 4^{\text {v }}$	154.60 (2)
$\mathrm{Sb4} 4^{\text {xiv }}$ - $\mathrm{Sr} 5-\mathrm{Sb4}{ }^{\text {v }}$	142.84 (2)
$\mathrm{Sb1} 1^{\mathrm{xiv}}$ — $\mathrm{Sr} 5-\mathrm{Sb} 4^{\mathrm{v}}$	59.942 (15)
$\mathrm{Sb1}{ }^{\mathrm{xv}}-\mathrm{Sr} 5-\mathrm{Sb} 4^{\mathrm{v}}$	82.274 (16)
$\mathrm{Sb} 3{ }^{\mathrm{v}}-\mathrm{Sr} 5-\mathrm{Sr} 4^{\mathrm{xiv}}$	121.62 (3)
$\mathrm{Sb} 5{ }^{\mathrm{v}}-\mathrm{Sr} 5-\mathrm{Sr} 4^{\text {xiv }}$	65.22 (2)

Sb5-In1-Sb5 ${ }^{\text {xvi }}$	121.55 (3)
Sb1 ${ }^{\text {vi}}-\mathrm{In} 1-\mathrm{Sr} 5^{\mathrm{xi}}$	71.52 (2)
$\mathrm{Sb} 1^{\mathrm{xix}}-\mathrm{In} 1-\mathrm{Sr} 5{ }^{\text {xi }}$	67.92 (2)
Sb5-In1—Sr5 ${ }^{\text {xi }}$	61.189 (19)
Sb5i-In1-Sr5i	175.69 (2)
Sb1i-In1—Sr5i	67.92 (2)
Sb1i-In1—Sr5i	71.52 (2)
Sb5-In1-Sr5i	175.69 (2)
Sb5i-In1—Sr5i	61.190 (19)
Sr5i-In1-Sr5i	116.30 (4)
Sb1i-In1—Sr6i	131.039 (16)
Sb1i-In1—Sr6i	131.039 (16)
Sb5-In1—Sr6i	60.776 (17)
Sb5i-In1—Sr6i	60.775 (17)
Sr5i-In1—Sr6i	121.848 (18)
Sr5i-In1-Sr6i	121.848 (18)
Sb1i-In1—Sr3i	60.794 (16)
Sb1i-In1—Sr3i	142.55 (2)
Sb5-In1-Sr3i	106.35 (2)
Sb5i-In1—Sr3i	59.400 (16)
Sr5i-In1-Sr3i	123.881 (18)
Sr5i-In1-Sr3i	71.844 (18)
Sr6i-In1-Sr3i	76.528 (16)
Sb1i-In1-Sr3i	142.55 (2)
Sb1i-In1-Sr3i	60.794 (17)
Sb5-In1-Sr3i	59.401 (16)
Sb5i-In1—Sr3i	106.35 (2)
Sr5i-In1-Sr3i	71.844 (18)
Sr5i-In1-Sr3i	123.881 (18)
Sr6i-In1-Sr3i	76.528 (16)
Sr3i-In1-Sr3i	153.06 (3)
Sb1i-In1-Sr4i	134.58 (2)
Sb1i-In1—Sr4i	55.642 (15)
Sb5-In1-Sr4i	115.55 (2)
Sb5i-In1—Sr4i	57.754 (16)
Sr5i-In1-Sr4i	118.359 (18)
Sr5i-In1-Sr4i	68.629 (18)
Sr6i-In1-Sr4i	83.985 (17)
Sr3i-In1-Sr4i	115.891 (17)
Sr3i-In1-Sr4i	60.955 (16)
Sb1i-In1—Sr4i	55.642 (15)

supplementary materials

In1 ${ }^{\text {xii }}-\mathrm{Sr} 5-\mathrm{Sr} 4^{\text {xiv }}$	106.92 (3)
$\mathrm{Sb1} 1^{\text {xiii }}$ - $\mathrm{Sr} 5-\mathrm{Sr} 4^{\text {xiv }}$	104.82 (2)
$\mathrm{Sb4}{ }^{\text {xiv }}$ - $\mathrm{Sr} 5-\mathrm{Sr} 4^{\text {xiv }}$	52.922 (17)
$\mathrm{Sb1} 1^{\text {xiv }}$ - $\mathrm{Sr} 5-\mathrm{Sr} 4^{\text {xiv }}$	49.300 (17)
$\mathrm{Sb1} 1^{\mathrm{xv}}-\mathrm{Sr} 5-\mathrm{Sr} 4^{\mathrm{xiv}}$	147.65 (3)
$\mathrm{Sb4}{ }^{\mathrm{v}}$ - $\mathrm{Sr} 5-\mathrm{Sr} 4^{\text {xiv }}$	96.39 (2)
$\mathrm{Sb} 3{ }^{\mathrm{v}}-\mathrm{Sr} 5-\mathrm{Sr}^{2 \mathrm{xv}}$	56.484 (19)
$\mathrm{Sb} 5{ }^{\mathrm{v}}-\mathrm{Sr} 5-\mathrm{Sr}^{2 \mathrm{xv}}$	116.98 (2)
In $1^{\mathrm{xii}}-\mathrm{Sr} 5-\mathrm{Sr} 2^{\mathrm{xv}}$	94.85 (2)
$\mathrm{Sb1} 1^{\text {xiii }} \mathrm{Sr} 5-\mathrm{Sr}^{\text {xv }}$	107.30 (2)
?-?-?-?	?

$\mathrm{Sb} 1 \mathrm{i}-\mathrm{In} 1 — \mathrm{Sr} 4 \mathrm{i}$	$134.58(2)$
$\mathrm{Sb} 5 — \mathrm{In} 1 — \mathrm{Sr} 4 \mathrm{i}$	$57.753(16)$
$\mathrm{Sb} 5 \mathrm{i}-\mathrm{In} 1 — \mathrm{Sr} 4 \mathrm{i}$	$115.55(2)$
$\mathrm{Sr} 5 \mathrm{i}-\mathrm{In} 1 — \mathrm{Sr} 4 \mathrm{i}$	$68.629(18)$
$\mathrm{Sr} 5 \mathrm{i}-\mathrm{In} 1 — \mathrm{Sr} 4 \mathrm{i}$	$118.359(18)$
$\mathrm{Sr} 6 \mathrm{i}-\mathrm{In} 1 — \mathrm{Sr} 4 \mathrm{i}$	$83.985(17)$
$\mathrm{Sr3i}-\mathrm{In} 1 — \mathrm{Sr} 4 \mathrm{i}$	$60.955(16)$
$\mathrm{Sr3i}-\mathrm{In} 1 — \mathrm{Sr} 4 \mathrm{i}$	$115.891(17)$
$\mathrm{Sr} 4 \mathrm{i}-\mathrm{In} 1 — \mathrm{Sr} 4 \mathrm{i}$	$167.97(3)$

Symmetry codes: (i) $-x+1 / 2,-y+1 / 2, z+1 / 2$; (ii) $x+1 / 2,-y+1 / 2, z$; (iii) $x+1 / 2, y-1 / 2, z+1 / 2$; (iv) $x-1 / 2,-y+1 / 2, z$; (v) $-x+1, y, z+1 / 2$; (vi) $-x+1,-y, z$; (vii) $-x+3 / 2,-y+1 / 2, z-1 / 2$; (viii) $x+1, y, z$; (ix) $x,-y, z-1 / 2$; (x) $-x+1 / 2,-y+1 / 2, z-1 / 2$; (xi) $-x+1, y, z-1 / 2$; (xii) $x+1$, $-y, z+1 / 2$; (xiii) $-x+2, y, z+1 / 2$; (xiv) $-x+3 / 2,-y+1 / 2, z+1 / 2$; (xv) $x,-y, z+1 / 2$; (xvi) $-x,-y, z$; (xvii) $-x, y, z+1 / 2$; (xviii) $-x+1 / 2, y-1 / 2$, z; (xix) $x-1, y, z$; (xx) $x-1,-y, z-1 / 2$; (xxi) $-x+2, y, z-1 / 2$; (xxii) $-x+1 / 2, y+1 / 2, z$; (xxiii) $x-1 / 2, y+1 / 2, z-1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$D-H \cdots A$
?-? \cdots ?
$D-\mathrm{H}$
?
$\mathrm{H} \cdots A$
?
$D \cdots A$
?
$D-H \cdots A$
?

supplementary materials

Fig. 1

